Notice for TAIYO YUDEN Products

[For High Quality and/or Reliability Equipment (Automotive Electronic Equipment / Industrial Equipment)]

Please read this notice before using the TAIYO YUDEN products.

I REMINDERS

Product information in this catalog is as of October 2018. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets.

- Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available.
- Please conduct validation and verification of our products in actual condition of mounting and operating environment before using our products.
- The products listed in this catalog are intended for use in general electronic equipment (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment), medical equipment classified as Class I or II by IMDRF, industrial equipment, and automotive interior applications, etc. Please be sure to contact TAIYO YUDEN for further information before using the products for any equipment which may directly cause loss of human life or bodily injury (e.g., transportation equipment including, without limitation, automotive powertrain control system, train control system, and ship control system, traffic signal equipment, medical equipment classified as Class III by IMDRF).

Please do not incorporate our products into any equipment requiring high levels of safety and/or reliability (e.g., aerospace equipment, aviation equipment*, medical equipment classified as Class IV by IMDRF, nuclear control equipment, undersea equipment, military equipment).

*Note: There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment.

When our products are used even for high safety and/or reliability-required devices or circuits of general electronic equipment, it is strongly recommended to perform a thorough safety evaluation prior to use of our products and to install a protection circuit as necessary.

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

- Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights.
- Please note that the scope of warranty for our products is limited to the delivered our products themselves and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a fault or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement.
- The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.

Caution for Export

Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.

Automotive Application Guide

We classify automotive electronic equipment into the following four application categories and set usable application categories for each of our products. When using our products for automotive electronic equipment, please be sure to check such application categories and use our products accordingly. Should you have any questions on this matter, please contact us.

Category	Automotive Electronic Equipment (Typical Example)
	Engine ECU (Electronically Controlled Fuel Injector) Cruise Control Unit
	• 4WS (4 Wheel Steering)
POWERTRAIN	Automatic Transmission
	Power Steering
	HEV/PHV/EV Core Control (Battery, Inverter, DC-DC)
	Automotive Locator (Car location information providing device), etc.
	ABS (Anti-Lock Brake System)
SAFETY	ESC (Electronic Stability Control)
57 (i 211	• Airbag
	ADAS (Equipment that directly controls running, turning and stopping), etc.
	• Wiper
	Automatic Door
	Power Window
	Keyless Entry System
BODY & CHASSIS	Electric Door Mirror
	Interior Lighting LED Headlight
	• TPMS (Tire Pressure Monitoring System)
	Anti-Theft Device (Immobilizer), etc.
	Car Infotainment System
	• ITS/Telematics System
INFOTAINMENT	Instrument Cluster
	• ADAS (Sensor, Equipment that is not interlocked with safety equipment or powertrain), etc.

MULTILAYER CERAMIC CAPACITORS

PART NUMBER

J	М	Κ	3	1	6	Δ	В	J	1	0	6	М	L	Н	Т	Δ
1										$\overline{\mathcal{O}}$		8				

①Rated voltage

Code	Rated voltage[VDC]
А	4
J	6.3
L	10
E	16
Т	25
G	35
U	50
Н	100
Q	250
S	630

 Ode
 Series name

 M
 Multilayer ceramic capacitor

 V
 Multilayer ceramic capacitor for high frequency

 W
 LW reverse type multilayer capacitor

Image: Second system End termination Code End termination K Plated J Soft Termination S Cu Internal Electrodes (For High Frequency) F High Reliability Application

 $\Delta =$ Blank space

④Dimension(L×W)

Туре	Dimensions (L×W)[mm]	EIA (inch)
063	0.6 × 0.3	0201
105	1.0 × 0.5	0402
105	0.52 × 1.0 💥	0204
107	1.6 × 0.8	0603
	0.8 × 1.6 💥	0306
010	2.0 × 1.25	0805
212	1.25 × 2.0 💥	0508
316	3.2 × 1.6	1206
325	3.2 × 2.5	1210
432	4.5 × 3.2	1812

Note : &LW reverse type($\Box WK$) only

ode	Туре	L[mm]	W[mm]	T[mm]
Δ	ALL	Standard	Standard	Standard
	063	0.6±0.05	0.3±0.05	0.3±0.05
	105	1.0±0.10	0.5±0.10	0.5±0.10
A	107	1.6+0.15/-0.05	0.8+0.15/-0.05	0.8+0.15/-0.05
	212	2.0+0.15/-0.05	$1.25 \pm 0.15 = 0.05$	0.85±0.10
	212	2.0+0.13/-0.03	1.25+0.15/-0.05	1.25+0.15/-0.05
	316	3.2 ± 0.20	1.6±0.20	1.6±0.20
	325	3.2 ± 0.30	2.5±0.30	2.5±0.30
	105	1.0+0.15/-0.05	0.5+0.15/-0.05	0.5+0.15/-0.05
	107	1.6+0.20/-0	0.8+0.20/-0	0.8+0.20/-0
В 212		1.05 0.00 / 0	0.85±0.10	
	2.0+0.20/-0	1.25+0.20/-0	1.25+0.20/-0	
	316	3.2±0.30	1.6±0.30	1.6±0.30
	105	1.0+0.20/-0	0.5+0.20/-0	0.5+0.20/-0
С	107	1.6+0.25/-0	0.8+0.25/-0	0.8+0.25/-0
	212	2.0+0.25/-0	1.25+0.25/-0	1.25+0.25/-0
	212	2.0±0.15	1.25±0.15	0.85 ± 0.15
К 316	216	3.2 ± 0.20	1.6±0.20	1.15±0.20
	316	3.2±0.20	1.0±0.20	1.6±0.20
	325	3.2±0.50	2.5±0.30	2.5±0.30
		Note: cf. STANDARD EXTERN	IAL DIMENSIONS	_=

$\textcircled{\begin{tabular}{ll} 6 \end{tabular}} Temperature characteristics code$

High dielectric	type								
Code	Applicable		Applicable standard		Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code
D.I.				05	1 150/	±10%	K		
BJ	EIA	X5R	$-55 \sim + 85$	25	±15%	±20%	м		
C6	EIA	X6S	$-55 \sim +105$	25	±22%	±10%	К		
00	LIA	703	55.4 1 105	25	± 22 %	±20%	М		
В7	EIA X7R -55~+125 25 ±15%		±15%	±10%	к				
Вл	LIA	7/1	33.4 1123	25	± 1370	±20%	М		
C7	EIA	X7S	$-55 \sim +125$	25	±22%	±10%	К		
07		7/5	33 * 1 123	25	<u> </u>	±20%	М		
D7	EIA		x7T −55~+12	$-55 \sim +125$	25	+22%/-33%	±10%	К	
07	LIA	~/1	55 * 1 125	25	1 22 /0/ 33 /0	±20%	М		

for High Quality Equipment

Temperature compensating type

Code		icable Idard	Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code												
		JIS CG	-55~+125	20		±0.1pF	В												
					0 L 20 /20	±0.25pF	С												
CG						$\pm 0.5 pF$	D												
UG		A COG													$-55 \sim +125$		0±30ppm∕°C	±1pF	F
	EIA			25		±2%	G												
						±5%	J												

⑦Nominal capacitance

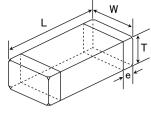
Code (example)	Nominal capacitance
0R5	0.5pF
010	1pF
100	10pF
101	100pF
102	1,000pF
103	0.01 <i>µ</i> F
104	0.1 <i>µ</i> F
105	1.0 <i>µ</i> F
106	10 <i>µ</i> F
107	100 <i>µ</i> F
Note : R=Decim	al point

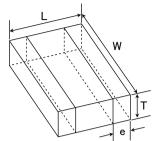
(9) Thickness Code Thickness[mm] Ρ 0.3 Т 0.5 V 0.7(107type or more) С А 0.8 D 0.85(212type or more) F 1.15 G 1.25 L 1.6 1.9 Ν М 2.5

Output to the second	blerance
Code	Capacitance tolerance
А	±0.05pF
В	±0.1pF
С	±0.25pF
D	±0.5pF
G	±2%
J	$\pm 5\%$
К	±10%
М	±20%

Н	MLCC for Industrial and Automotive				
11)Packaging	7				
Code	Packaging				
F	ϕ 178mm Taping (2mm pitch)				
R	ϕ 178mm Embossed Taping (4mm pitch)				
Т	ϕ 178mm Taping (4mm pitch)				
Р	ϕ 178mm Taping (4mm pitch, 1000 pcs/reel)				
	325 type(Thickness code M)				

Special code


12Internal code


①Special code

Code

Winternal code	
Code	Internal code
Δ	Standard

for High Quality Equipment

※ LW reverse type

- ()		Dime	nsion [mm] (inch)		
Type(EIA)	L	W	Т	*1	е
□MK063(0201)	0.6 ± 0.03 (0.024 ± 0.001)	0.3 ± 0.03 (0.012 \pm 0.001)	0.3±0.03 (0.012±0.001)	т	0.15 ± 0.05 (0.006 ± 0.002)
□MK105(0402)	1.0±0.05	0.5 ± 0.05	0.5±0.05	v	0.25±0.10
□MF105(0402) □WK105(0204)※	(0.039 ± 0.002) 0.52 ± 0.05	(0.020 ± 0.002) 1.0 ± 0.05	(0.020 ± 0.002) 0.3 ± 0.05	Р	(0.010 ± 0.004) 0.18 ± 0.08
□MK107(0603)	(0.020 ± 0.002) 1.6 ± 0.10	(0.039±0.002) 0.8±0.10	(0.012±0.002) 0.8±0.10	A	(0.007±0.003) 0.35±0.25
□MF107(0603)	(0.063 ± 0.004) 1.6 \pm 0.10	(0.031 ± 0.004) 0.8 ± 0.10	(0.031 ± 0.004) 0.8 ± 0.10		(0.014 ± 0.010) $0.35 \pm 0.3/-0.25$
□MJ107(0603)	(0.063 ± 0.004) 1.6 ± 0.10	(0.031 ± 0.004) 0.8 ± 0.10	(0.031 ± 0.004) 0.7 ± 0.10	A	$(0.014 \pm 0.012 - 0.010)$ 0.35 ± 0.25
□VS107(0603)	(0.063 ± 0.004)	(0.031±0.004)	(0.028±0.004)	С	(0.014±0.010)
□WK107(0306)※	0.8±0.10 (0.031±0.004)	1.6 ± 0.10 (0.063 ± 0.004)	0.5 ± 0.05 (0.020 ± 0.002)	V	0.25 ± 0.15 (0.010 ± 0.006)
□MK212(0805)	2.0±0.10	1.25±0.10	0.85±0.10 (0.033±0.004)	D	0.5 ± 0.25
□MF212(0805)	(0.079±0.004)	(0.049±0.004)	1.25 ± 0.10 (0.049 ± 0.004)	G	(0.020±0.010)
	2.0±0.10	1.25±0.10	0.85 ± 0.10 (0.033 ± 0.004)	D	0.5+0.35/-0.25 (0.020+0.014/-0.010)
□MJ212(0805)	(0.079 ± 0.004)	(0.049 ± 0.004)	1.25 ± 0.10 (0.049 ± 0.004)	G	
□VS212(0805)	2.0 ± 0.10 (0.079 ± 0.004)	1.25 ± 0.10 (0.049 ± 0.004)	0.85±0.10 (0.033±0.004)	D	0.5±0.25 (0.020±0.010)
□WK212(0508)※	1.25 ± 0.15 (0.049 ± 0.006)	2.0 ± 0.15 (0.079 ± 0.006)	0.85 ± 0.10 (0.033 ± 0.004)	D	0.3±0.2 (0.012±0.008)
□MK316(1206)	3.2±0.15	1.6±0.15	1.15 ± 0.10 (0.045 ± 0.004)	F	0.5+0.35/-0.25
□MF316(1206)	(0.126±0.006)	(0.063 ± 0.006)	1.6±0.20 (0.063±0.008)	L	(0.020+0.014/-0.010)
□MJ316(1206)	3.2±0.15	1.6±0.15	1.15±0.10 (0.045±0.004)	F	0.6+0.4/-0.3
LIMU310(1200)	(0.126±0.006)	(0.063±0.006)	1.6±0.20 (0.063±0.008)	L	(0.024+0.016/-0.012)
			1.15±0.10 (0.045±0.004)	F	
□MK325(1210) □MF325(1210)	3.2 ± 0.30 (0.126 ± 0.012)	2.5 ± 0.20 (0.098 ± 0.008)	1.9 ± 0.20 (0.075 ± 0.008)	N	0.6 ± 0.3 (0.024 ± 0.012)
··-··		,	2.5±0.20 (0.098±0.008)	м	
	0.0 + 0.00	0.5 - 0.00	1.9±0.20	N	
□MJ325(1210)	3.2 ± 0.30 (0.126 ± 0.012)	2.5 ± 0.20 (0.098 ± 0.008)	$\begin{array}{r} (0.075 \pm 0.008) \\ 2.5 \pm 0.20 \\ (0.098 \pm 0.008) \end{array}$	м	$\begin{array}{c} 0.6 + 0.4 / -0.3 \\ (0.024 + 0.016 / -0.012) \end{array}$
	4.5±0.40	3.2±0.30	(0.098±0.008) 2.5±0.20	м	0.9±0.6

for High Quality Equipment

STANDARD QUANTITY

Туре	EIA (inch)	Dime	nsion	Standard qu	uantity[pcs]
туре	EIA (Inch)	[mm]	Code	Paper tape	Embossed tape
063	0201	0.3	Т	15000	-
105	0402	0.5	V	10000	
105	0204 💥	0.30	Р	10000	_
		0.7	С	4000	_
		0.8	A	4000	_
107	0603	0.8	A	3000 (Soft Termination)	-
		0.8	А	-	3000 (Soft Termination
	0306 💥	0.50	V	-	4000
		0.85	D	4000	_
	0005	1.25	G	-	3000
212	0805	1.25	G	-	2000 (Soft Termination
	0508 💥	0.85	D	4000	_
010	1000	1.15	F	-	3000
316	1206	1.6	L	-	2000
		1.15	F		2000
325	1210	1.9	Ν		2000
		2.5	М	-	500(T), 1000(P)
432	1812	2.5	М	_	500

LW Reversal Decoupling Capacitors (LWDC[™])

105TYPE (Dimension:0.52 × 1.0mm JIS:0510 EIA:0204)

[Temperature Characteristic BJ : $X5R(-55 \sim +85^{\circ}C)$] 0.3mm thickness(P)

Part	number 1	Part number 2	Rated voltage		rature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
i ui c			[V]	charact	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [min]	NOLE
TWK105 B	3J104MPHF		25		X5R	0.1 μ	±20	5	150	0.3 ± 0.05	*1, *2
EWK105 B	3J224MPHF		16		X5R	0.22 µ	±20	10	150	0.3 ± 0.05	*1, *2
LWK105 B	J474MPHF		10		X5R	0.47 μ	±20	10	150	0.3 ± 0.05	*1, *2
AWK105 E	BJ105MPHF		4		X5R	1 μ	±20	10	150	0.3 ± 0.05	*1, *2

[Temperature Characteristic C6 : $X6S(-55 \sim +105^{\circ}C)$, C7 : $X7S(-55 \sim +125^{\circ}C)$] 0.3mm thickness(P)

Part number 1	Part number 2	Rated voltage	Tempe	erature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Part number 1	Part number 2	[V]	charact	teristics	[F]	tolerance [%]	[%]	Rated voltage x %		Note
EWK105 C6104MPHF		16		X6S	0.1 μ	±20	5	150	0.3 ± 0.05	*1, *2
LWK105 C7104MPHF		10		X7S	0.1 μ	±20	5	150	0.3 ± 0.05	*1, *2
LWK105 C6224MPHF		10		X6S	0.22 μ	±20	10	150	0.3 ± 0.05	*1, *2
JWK105 C7104MPHF				X7S	0.1 μ	±20	5	150	0.3 ± 0.05	*1, *2
JWK105 C7224MPHF		6.3		X7S	0.22 μ	±20	10	150	0.3 ± 0.05	*1, *2
JWK105 C6474MPHF				X6S	0.47 μ	±20	10	150	0.3 ± 0.05	*1, *2
AWK105 C7224MPHF		4		X7S	0.22 μ	±20	10	150	0.3 ± 0.05	*1, *2
AWK105 C6474MPHF		4		X6S	0.47 <i>u</i>	±20	10	150	0.3 ± 0.05	*1. *2

107TYPE (Dimension:0.8 × 1.6mm JIS:0816 EIA:0306)

[Temperature Characteristic BJ : $X5R(-55 \sim +85^{\circ}C)$] 0.5mm thickness(V)

Part number 1	Part number 2	Rated voltage [V]	 erature eristics	Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
LWK107 BJ105MVHT		10	X5R	1 μ	±20	10	150	0.5 ± 0.05	*1, *2
JWK107 BJ225MVHT		6.3	X5R	2.2 μ	±20	10	150	0.5 ± 0.05	*1, *2
JWK107 BJ475MVHT		0.3	X5R	4.7 μ	±20	10	150	0.5 ± 0.05	*1, *2

Part number 1	Part number 2	Rated voltage	Tempe	rature	Capacitance	Capacitance	tan δ	HTLT	*3 5 3	Note
Part number 1	Part number 2	[V]	charact	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness ^{*3} [mm]	Note
TWK107 B7104MVHT		25		X7R	0.1 μ	±20	5	150	0.5 ± 0.05	*1, *2
EWK107 B7224MVHT		16		X7R	0.22 μ	±20	5	150	0.5 ± 0.05	*1, *2
EWK107 B7474MVHT		10		X7R	0.47 μ	±20	5	150	0.5 ± 0.05	*1, *2
LWK107 B7474MVHT		10		X7R	0.47 μ	±20	5	150	0.5 ± 0.05	*1, *2
JWK107 C7105MVHT		6.3		X7S	1 μ	±20	10	150	0.5 ± 0.05	*1, *2
AWK107 C6225MVHT		4		X6S	2.2 μ	±20	10	150	0.5 ± 0.05	*1, *2
AWK107 C6475MVHT		4		X6S	4.7 μ	±20	10	150	0.5 ± 0.05	*1, *2

212TYPE (Dimension:1.25 × 2.0mm JIS:1220 EIA:0508)

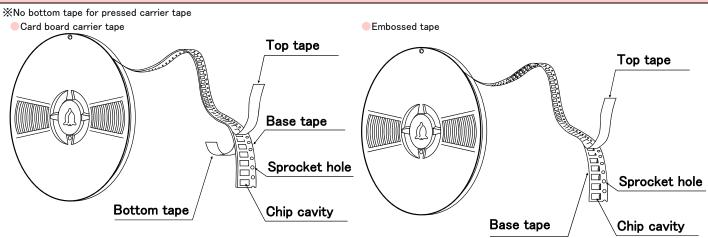
[Temperature Characteristic BJ : $X5R(-55 \sim +85^{\circ}C)$] 0.85mm thickness(D)

Part number 1	Part number 2	Rated voltage [V]	Tempe charact		Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
LWK212 BJ475[]DHT		10		X5R	4.7 μ	±10, ±20	10	150	0.85±0.10	*1, *2
JWK212 BJ106MDHT		6.3		X5R	10 µ	±20	10	150	0.85±0.10	*1, *2
AWK212 BJ226MDHT		4		X5R	22 μ	±20	10	150	0.85±0.10	*1, *2

[Temperature Characteristic C6 : $X6S(-55 \sim +105^{\circ}C)$] 0.85mm thickness(D)

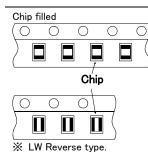
	Part number 1	Part number 2	Rated voltage [V]	Tempera character		Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
,	WK212 C6475[]DHT		6.3		X6S	4.7 μ	±10, ±20	10	150	0.85±0.10	*1, *2

Multilayer Ceramic Capacitors

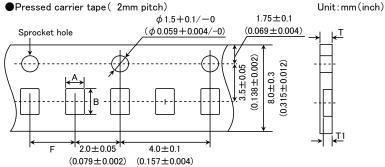

PACKAGING

①Minimum Quantity

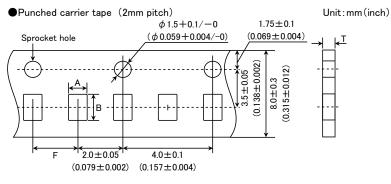
_ ()	Thick	ness	Standard o	uantity [pcs]
Type(EIA)	mm	code	Paper tape	Embossed tape
□MK021(008004)	0.105	к		50000
□VS021(008004)	0.125	n	_	50000
MK042(01005)	0.2	C, D		40000
□VS042(01005)	0.2	С		40000
□MK063(0201)	0.3	P,T	15000	—
□WK105(0204) 💥	0.3	Р	10000	_
	0.13	Н	_	20000
	0.18	E	_	15000
□MK105(0402)	0.2	С	20000	-
□MF105(0402)	0.3	Р	15000	-
	0.5	V	10000	_
□VK105(0402)	0.5	W	10000	-
MK107(0603)	0.45	К	4000	-
□WK107(0306) ※	0.5	V	-	4000
□MF107(0603)	0.8	А	4000	-
□VS107(0603)	0.7	С	4000	-
□MJ107(0603)	0.8	А	3000	3000
□MK212(0805)	0.45	К	4000	
□WK212(0508) ※	0.85	D	4000	_
□MF212(0805)	1.25	G	_	3000
□VS212(0805)	0.85	D	4000	_
	0.85	D	4000	_
□MJ212(0805)	1.25	G	-	2000
	0.85	D	4000	-
□MK316(1206)	1.15	F	_	3000
□MF316(1206)	1.6	L	-	2000
	1.15	F	-	3000
□MJ316(1206)	1.6	L	_	2000
	0.85	D		
	1.15	F		
□MK325(1210)	1.9	Ν	7 -	2000
□MF325(1210)	2.0max.	Y	1	
	2.5	М	_	1000
	1.9	Ν	—	2000
□MJ325(1210)	2.5	М	—	500(T), 1000(P)
□MK432(1812)	2.5	М	-	500


Note : 💥 LW Reverse type.

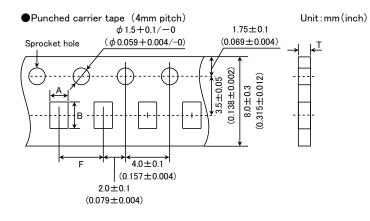
(2) Taping material


This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

TAIYO YUDEN



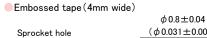
3 Representative taping dimensions

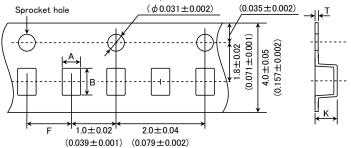


Type(EIA)	Chip	Cavity	Insertion Pitch	Tape Tł	nickness
Type(EIA)	А	В	F	Т	T1
□MK063(0201)	0.37	0.67		0.45max.	0.42max.
□WK105(0204) ※			2.0 ± 0.05	0.45max.	0.42max.
□MK105(0402) (*1 C)	0.65	1.15	2.0±0.05	0.4max.	0.3max.
□MK105(0402) (*1 P)				0.45max.	0.42max.
Note *1 Thickness, C:0.	2mm ,P:0.3mm. 💥 LW	Reverse type.			Unit:mm

Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness
Type(EIA)	A	В	F	Т
□MK105 (0402) □MF105 (0402) □VK105 (0402)	0.65	1.15	2.0±0.05	0.8max.

Unit:mm

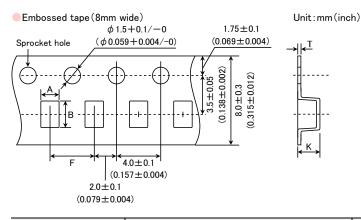




Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness
Type(LIA)	А	В	F	Т
□MK107(0603)				
□WK107(0306) 💥	1.0	1.8		1.1max.
□MF107(0603)			40104	
MK212(0805)	1.05	0.4	4.0±0.1	
□WK212(0508) 💥	1.65	2.4		1.1max.
DMK316(1206)	2.0	3.6		
Note:Taping size might	be different depending on	the size of the product.	※ LW Reverse type.	Unit : mm

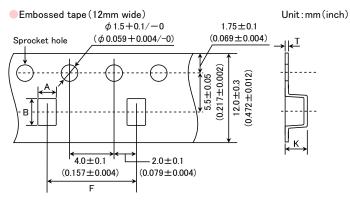
 0.9 ± 0.05

Note: Taping size might be different depending on the size of the product. % LW Reverse type.



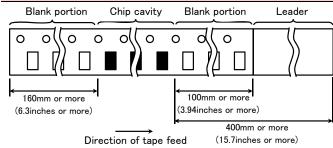
Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Tł	nickness
Type(EIA)	А	В	F	К	Т
□MK021(008004)	0.135	0.27			
□VS021(008004)	0.135	0.27	1.0 ± 0.02	0.5max.	0.25max.
□MK042(01005)	0.23	0.42	1.0±0.02	0.5max.	0.25max.
□VS042(01005)	0.23	0.43			

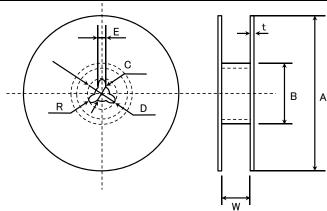
Unit:mm(inch)


Unit:mm

Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness		
Type(EIA)	А	В	F	К	Т	
□MK105(0402)	0.6	1.1	2.0±0.1	0.6max	0.2±0.1	
□WK107(0306) ※	1.0	1.8		1.3max.	0.25 ± 0.1	
□MK212(0805)	1.65	2.4				
DMF212(0805)	1.05	2.4				
□MK316(1206)	2.0	3.6	4.0±0.1	3.4max.	0.6max.	
□MF316(1206)	2.0	5.0		3.4max.	0.0max.	
□MK325(1210)	2.8	3.6				
□MF325(1210)	2.0	5.0				

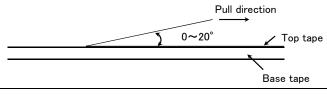
Note: 💥 LW Reverse type.


Unit:mm


Type(EIA)	Chip (Cavity	Tape Thickness		
Type(EIA)	A A		F	К	Т
□MK325(1210)	3.1	4.0	8.0±0.1	4.0max.	0.6max.
□MK432(1812)	3.7	4.9	8.0±0.1	4.0max.	0.6max.

Unit : mm

④Trailer and Leader


⑤Reel size

А	В	С	D	E	R
ϕ 178±2.0	<i>ф</i> 50min.	ϕ 13.0±0.2	<i>ф</i> 21.0±0.8	2.0 ± 0.5	1.0
	Т	W			
4mm wide tape	1.5max.	5±1.0			
8mm wide tape	2.5max.	10±1.5	-		
12mm wide tape	2.5max.	14±1.5	Unit : mm		

6 Top Tape Strength

The top tape requires a peel-off force of 0.1 to 0.7N in the direction of the arrow as illustrated below.

RELIABILITY DATA

1.Operating Te	mperature Range									
	Temperature Standard									
	Compensating(Class1)	High Frequency Type	- 55 to -	−55 to +125°C						
				Specification	Temperature Range					
				В	-25 to +85°C					
Specified				X5R	−55 to +85°C					
Value			B7	X7R	-55 to $+125^{\circ}$ C					
	High Permittivity (Class2))	C6	X6S	-55 to +105°C					
			C7	X7S	-55 to +125°C					
			D7	X7T	-55 to +125°C					
				X5R	$-55 \text{ to } +85^{\circ}\text{C}$					
			Note: 🔆	LD Low distortion k	high value multilayer ceramic capa	citor				

2. Storage Co	nditions								
	Temperature Standard								
	Compensating(Class1)	High Frequency Type	- 55 to +	$-55 \text{ to } +125^{\circ}\text{C}$					
				Specification	Temperature Range				
			БТ	В	-25 to +85°C				
Specified	Specified		BJ	X5R	-55 to +85°C				
Value			B7	X7R	−55 to +125°C				
	High Permittivity (Class2)	C6	X6S	$-55 \text{ to } +105^{\circ}\text{C}$				
				X7S	-55 to +125°C				
				X7T	-55 to +125°C				
			LD(💥)	X5R	−55 to +85°C				
			Note: 🗙	LD Low distortion	high value multilayer ceramic capacitor				

3. Rated Voltag	ge		
0 10 1	Specified Temperature Compensating(Class1)	Standard	50VDC, 25VDC
Specified Value		High Frequency Type	50VDC, 25VDC
Value	High Permittivity (Class2))	50VDC, 35VDC, 25VDC, 16VDC, 10VDC, 6.3VDC, 4VDC, 2.5VDC

4. Withstanding	. Withstanding Voltage(Between terminals)								
Specified Value	Temperature	Standard							
	Compensating(Class1)	High F	requency Type	No breakdown o	No breakdown or damage				
	High Permittivity (Class2)								
Test	(ass 1					
Test Methods and	Applied voltage Rated		Rated	ated volta × 3 Rated voltage × 2.5					
Remarks	Duration			1 to 5					
i temariks	Charge/discharge currer	nt		50mA	max.	7			

5. Insulation Re	i. Insulation Resistance							
	Temperature	Standard	10000 MΩmin.					
Value	Compensating(Class1)	High Frequency Type						
	High Permittivity(Class2)	Note 1	C≦0.047 μF : 10000 MΩ min. C>0.047 μF : 500MΩ• μF					
Test	Applied voltage : Rated voltage							
Methods and	Duration : 60±5 sec.							
Remarks	Charge/discharge current : 50mA max.							

6. Capacitance	pacitance (Tolerance)								
	Temperature	Standard	C□ U□ SL	0.2pF≦C≦5pF 0.2pF≦C≦10pF C>10pF	: ±0.25pF : ±0.5pF : ±5% or ±10%				
Specified Value	Specified Compensating(Class1) /alue	High Frequency Type	СН	0.3pF≦C≦2pF C>2pF	: ±0.1pF : ±5%				
	High Permittivity(Class2)	High Permittivity(Class2)			$\pm 10\%$ or $\pm 20\%$ gh value multilayer ceramic	capacitor			
			Clas	ss 1	Cla	ass 2			
т .		Standard	Standard High Frequency Type		C≦10 <i>µ</i> F	C>10 µF			
Test Mathada and	Preconditioning		None		Thermal treatment (a	t 150°C for 1hr) Note 2			
Methods and Remarks	Measuring frequency		1MHz±10%		1kHz±10%	120±10Hz			
rtemarks	Measuring voltage Note		0.5 to	5Vrms	1±0.2Vrms	0.5±0.1rms			
	Bias application				one				

Specified Compensating(Cla Value		Standard High Frequency Type		$\begin{array}{l} C < 30 p F : Q \geqq 400 + 20 C \\ C \geqq 30 p F : Q \geqq 1000 \qquad (C:Nominal capacitance) \end{array}$					
	Compensating (Class I)			Refer	to detailed specification				
	High Permittivity (Class2) Note 1		1	BJ, B7, C6, C7, D7:2.5% max.					
					ss 1	Class 2			
			Standard		High Frequency Type	C≦10 <i>µ</i> F	C>10 µF		
	Preconditioning				one	Thermal treatment (at	150°C for 1hr) Note 2		
Test	Measuring frequey		1MHz±10	D%	1GHz	1kHz±10%	$120\pm10Hz$		
Methods and	Measuring voltage Note	1		0.5 to	5Vrms	1±0.2Vrms	$0.5 \pm 0.1 V rms$		
Remarks	Bias application					None			
	High Frequency Type								
	Measuring equipment	: HP	4291A						
	Measuring jig : HP16192A								

			Tem	perature Charac	teristic [ppm/°	C]	Tole	rance [ppm/°C]
			C□ :		CG.CH. CJ.			G: ±30
		Standard	℃□:	0	CG,CH, CJ, C	GK		H:±60
	Temperature	Standard	U 🗆 :	- 750	UJ. UK			J:±120
	Compensating(Class1)		00.	- 750	00, OK			K:±250
			SL :	+350 to -100	0			
			Tem	perature Charac	cteristic [ppm/°	C]	Tole	rance [ppm/°C]
		High Frequency Type	C□ :	0	СН			H:±60
Specified					Capacitance	Re	ference	
Value				Specification	change	tem	perature	Temperature Range
			BJ	В	±10%		20°C	−25 to +85°C
			БJ	X5R	±15%		25°C	−55 to +85°C
High Bormittivity (Close	High Permittivity (Class2)	B7	X7R	±15%		25°C	−55 to +125°C
	Thermittivity (Oldssz	ign Fernicuvity (Olassz)			±22%		25°C	−55 to +105°C
					±22%		25°C	−55 to +125°C
			D7	X7S	+22/-33%		25°C	−55 to +125°C
			LD(X)	X5R	±15%		25°C	−55 to +85°C
			Note : 🔅	LD Low disto	ortion high value	multila	yer ceram	ic capacitor
	Class 1							
	Capacitance at 20°C and	85°C shall be measured	d in therr	nal equilibrium, a	and the tempera	ture c	haracteris	tic shall be calculate
	following equation.							
	$\frac{(C_{85}-C_{20})}{(C_{85}-C_{20})}$ ×	10 ⁶ (ppm/°C)						
	$C_{20} \times \Delta T$	Δ	T=65					
Test	Class 2							
Methods and	Capacitance at each step	shall be measured in the	ermal equi	ilibrium. and the	temperature cha	aracter	istic shall	be calculated from th
Remarks	equation.				·			
	Step	В		X5R、X7R、X6S、	X7S,X7T	1		
	1	Minimum ope	erating te	mperature				
	2	20°C		25°C				
	3	Maulanum	erating temperature					

 $\frac{(C-C_2)}{C_2} \times 100(\%)$

C : Capacitance in Step 1 or Step 3 C2 : Capacitance in Step 2

9. Deflection Appearance : No abnormality Standard Capacitance change : Within $\pm 5\%$ or ± 0.5 pF, whichever is larger. Temperature Compensating(Class1) Appearance : No abnormality Specified High Frequency Type Cpaitance change : Within $\pm 0.5 \text{ pF}$ Value Appearance : No abnormality High Permittivity (Class2) Capacitance change : Within ±12.5% (BJ, B7, C6, C7, D7, LD(🔆)) Note: XLD Low distortion high value multilayer ceramic capacitor Multilayer Ceramic Capacitors ^{**1}105 Type 042, 063, The other types Board Glass epoxy-resin substrate Warr Test Thickness 0.8mm 1.6mm Methods and Warp 1mm (Soft Termination type:3mm) Remarks Duration 10 sec. ^{*1:}105 Type thickness, C: 0.2mm ,P: 0.3mm. (Unit: mm) Capacitance measurement shall be conducted with the board bent

10. Body Stren	10. Body Strength							
0.15.1	Temperature	Standard	_					
Specified Value	Compensating(Class1)	High Frequency Type	No mechanical damage.					
	High Permittivity (Class2))	_					
Test Methods and Remarks	High Frequency Type Applied force : 5N Duration : 10 sec.	← A → ∑	R0.5 Pressing jig Chip Chip 0.6A A					

11. Adhesive Strength of Terminal Electrodes							
	Temperature	Standard					
Specified Value	Compensating(Class1)) High Frequency Ty	be No terminal separati	No terminal separation or its indication.			
Value	High Permittivity (Cla	ss2)					
		Multilayer Cera	mic Capacitors	Hooked jig			
Test		042, 063 Type	105 Type or more				
Methods and	Applied force	2N	5N	R=05 Deard			
Remarks	Duration	30±5	5 sec.				

12. Solderability	. Solderability					
Specified Value	Temperature	Standard		At least 95% of terminal electrode is covered b		
	Compensating(Class1)	High Frequency Type	At least 95			
	High Permittivity (Class2))				
Test		Eutectic so	older	Lead-free solder		
Test Methods and	Solder type	H60A or H	63A	Sn-3.0Ag-0.5Cu		
Remarks	Solder temperature	230±5°	С	245±3°C		
	Duration		4±1 sec.			

Temperature	Standard	Appearance Capacitance change Q Insulation resistance Withstanding voltage	: Initial value : Initial value	0.25pF, whichever is larger.) : No abnormality
Compensating(Class1	High Frequency Type	Appearance Capacitancecange Q Insulation resistance Withstanding voltage	: No abnormality : Within ±2.5% : Initial value : Initial value (between terminals)): No abnormality
High Permittivity(Cl	ass2) Note 1	Appearance Capactace change Dissipation factor Insulation resistance Withstanding voltage Note: %LD Low distort	: Initial value : Initial value (between terminals)	-
		lss 1		
Due e en ditien in n	042, 063 Type			-
Preconditioning			0°C. 2 to 5 min	
Preheating	150°C, 1 to 2 min.	150 to 200°C, 2 to 5 min.		
Solder temp.		270±5°C		
Duration		3±0.5 sec.		
Recovery	6 to 24 hrs	3 (Standard condition) N	loe 5	
		(Class 2	
	042,063 Type	1		316, 325 Type
Preconditioning				
	150°0 1 4 0 5	80 to 100°C, 2 to 5 min.		80 to 100°C, 5 to 10 min.
Preneating	150 C, 1 to 2 min.	150 to 20	00°C, 2 to 5 min.	150 to 200°C, 5 to 10 min.
Solder temp.		2	70±5℃	
Duration		3=	±0.5 sec.	
Recovery		24±2 hrs(Stan	dard condition) Note	5
re Cycle (Thermal Shoc	k)			
		Appearance	: No abnormality	
	Standard	Capacitance change Q	: Initial value	0.25pF, whichever is larger.
T	Standard	Capacitance change Q Insulation resistance	: Initial value : Initial value	
Temperature		Capacitance change Q Insulation resistance Withstanding voltage	: Initial value : Initial value (between terminals)	
Temperature Compensating(Class1		Capacitance change Q Insulation resistance Withstanding voltage Appearance	: Initial value : Initial value (between terminals) : No abnormality	
		Capacitance change Q Insulation resistance Withstanding voltage	: Initial value : Initial value (between terminals)	
	Compensating (Class1 High Permittivity (Class1 Preconditioning Preheating Solder temp. Duration Recovery Preheating Solder temp. Duration Recovery Duration Recovery	Temperature Compensating (Class1) High Frequency Type High Permittivity (Class2) Note 1 Preconditioning Preheating 150°C, 1 to 2 min. Solder temp. Duration Recovery 042, 063 Type Preheating 150°C, 1 to 2 min. Solder temp. Duration Recovery Solder temp. Duration Recovery	Temperature Compensating(Class1) Standard Capacitance change Q Insulation resistance Withstanding voltage High Frequency Type Appearance Capacitancecange Q Insulation resistance Withstanding voltage High Permittivity (Class2) Note 1 High Permittivity (Class2) Note 1 Preconditioning Appearance Capactace change Dissipation factor Insulation resistance Withstanding voltage Note: %LD Low distord Preconditioning None Preheating 150°C, 1 to 2 min. Solder temp. 270±5°C Duration 3±0.5 sec. Recovery 6 to 24 hrs (Standard condition) N Preheating 150°C, 1 to 2 min. O42, 063 Type 105, 1 Preconditioning Thermal treatment Preheating 150°C, 1 to 2 min. Solder temp. 2 Quration 32 Recovery 2 Solder temp. 2 Quration 32 Recovery 24	Temperature Standard Capacitance change : Within ±2.5% or ± Compensating(Class1) High Frequency Type Appearance : No abnormality High Permittivity (Class2) Note 1 Appearance : No abnormality High Permittivity (Class2) Note 1 Appearance : No abormality Gapacitancecange : Within ±2.5% Within ±2.5% High Permittivity (Class2) Note 1 Appearance : No abormality Gapactace change : Within ±7.5% (BJ, Dissipation factor : Initial value Insulation resistance : Initial value : Initial value Mithin Permittivity (Class2) Note 1 Dissipation factor : Initial value Insulation resistance : Initial value : Initial value : Initial value Insulation resistance : Initial value : Initial value : Initial value Insulation resistance : Initial value : Initial value : Initial value Insulation resistance : Initial value : Initial value : Initial value Insulation resistance : Initial value : Initial value : Initial value Preconditioning 042, 063 Type

Specified Value	Compensating (Class1)	High Frequency Type	Appearance : No abnormality Capacitance change : Within ±0.25pF Q : Initial value Insulation resistance : Initial value Withstanding voltage (between terminals) : No abnormality			
	High Permittivity(Class2) Note 1	Appearance : No abnormality Capacitance change : Within ±7.5% (BJ, B7, C6, C7, D7, LD(X)) Dissipation factor : Initial value Insulation resistance : Initial value Withstanding voltage (between terminals) : No abnormality Note: XLD Low distortion high value multilayer ceramic capacitor			
			Class 1	Class 2		
	Preconditioning		None		itment (at 150°C for 1 hr) Note 2	
		Step	Temperatur	e(°C)	Time(min.)	
Test		1	Minimum operating		30±3	
Methods and Remarks	1 cycle	2	Normal temp	erature	2 to 3	
nemarks		3	Maximum operating	temperature	30±3	
		4	Normal temp	emperature 2 to 3		
	Number of cycles		5 t	times		
	Recovery	6 to 24 hrs(Star	ndard condition)Note 5	24±2 hrs(Standard condition)Note 5	

15. Humidity(Steady State)					
Specified Value	Temperature Compensating(Class))	Capacitance change : N Q : 0		abnormality thin $\pm 5\%$ or ± 0.5 pF, whichever is larger. <10 pF : Q $\ge 200+10$ C $0 \le C < 30$ pF : Q $\ge 275+2.5$ C ≥ 30 pF:Q ≥ 350 (C:Nominal capacitance) 00 M Ω min.	
		High Frequency Type	Appearance Capacitance change Insulation resistance	: No abnormality : Within ±0.5pF, : 1000 MΩmin.		
	High Permittivity(Cl	Appearance Capacitance change Dissipation factor Insulation resistance Note: XLD Low distor	: Wit : 5.0 : 50	a abnormality thin ±12.5% (BJ, B7, C6, C7, D7, LD(\bigotimes)) % max.(BJ, B7, C6, C7, D7, LD(\bigotimes)) M ΩμF or 1000 M Ω whichever is smaller. igh value multilayer ceramic capacitor		
		Cla	Class 1		Class 2	
		Standard	High Frequency Typ	e	All items	
Test	Preconditioning	N	lone		Thermal treatment(at 150°C for 1 hr) Note 2	
Methods and	Temperature	40±2°C	60±2°C		40±2°C	
Remarks	Humidity	90 to	95%RH		90 to 95%RH	
	Duration	500+2	4/−0 hrs		500+24/-0 hrs	
	Recovery	6 to 24 hrs(Stand	ard condition)Note 5		24±2 hrs(Standard condition)Note 5	

16. Humidity Lo	pading					
Specified Value	Temperature	Standard	$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
	Compensating(Class1)	High Frequency Type	$\begin{array}{llllllllllllllllllllllllllllllllllll$			
	High Permittivity(Class2) Note 1	$\begin{array}{llllllllllllllllllllllllllllllllllll$			
		C	Class 1	Class 2		
		Standard	High Frequency Typ	e All items		
	Preconditioning		None	Voltage treatment (Rated voltage are applied for 1 hour at 40°C) Note 3		
Test	Temperature	40±2°C	60±2°C	40±2°C		
Methods and	Humidity	90 t	o 95%RH	90 to 95%RH		
Remarks	Duration	500+	24/-0 hrs	500+24/-0 hrs		
	Applied voltage	Rate	ed voltage	Rated voltage		
	Charge/discharge current	50r	mA max.	50mA max.		
	Recovery	6 to 24 brs (Stan	dard condition)Note 5	24 ± 2 hrs(Standard condition) Note 5		

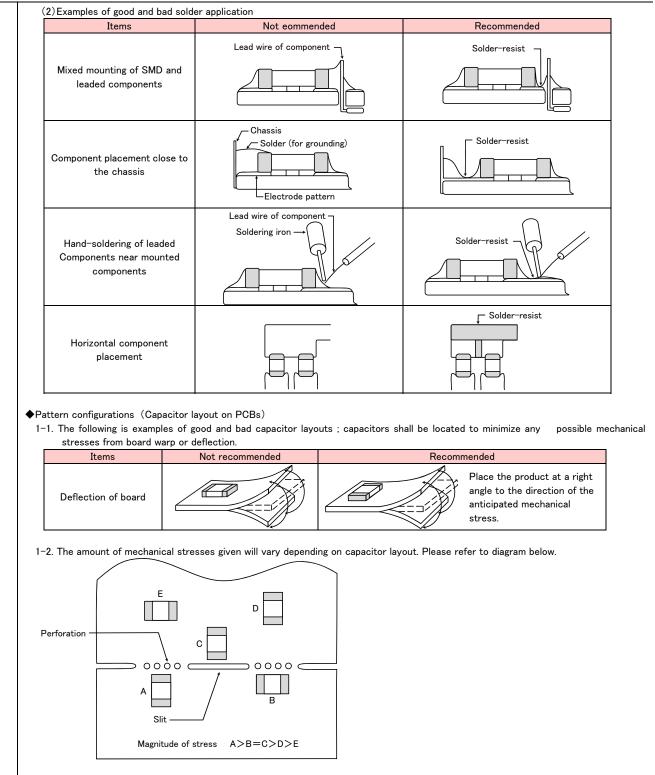
17. High Temp	erature Loading							
Specified Value	Temperature Compensating(Class1)	Standard	Appearance Capacitance change Q Insulation resistance		: $C < 10pF$: $Q \ge 200 + 10C$ $10 \le C < 30pF$: $Q \ge 275 + 2.5C$ $C \ge 30pF$: $Q \ge 350$ (C:Nominal capacitance)			
		High Frequency Type	Appearance Capacitance change Insulation resistance					
	High Permittivity(Class2) Note 1		Appearance Capacitance change Dissipation factor Insulation resistance Note: ※LD Low dist	: 5.0% max.(BJ, : 50 M <i>Ωμ</i> F or 10	(BJ, B7, C6, C7, D7 B7, C6, C7, D7, LD(※ 000 M Ω whichever is	()) smaller.		
		Clas	s 1		Class 2			
		Standard H	ligh Frequency Type	BJ, LD(🔆)	C6	B7, C7, D7		
	Preconditioning	None		Voltage treatment (Twice the rated voltage shall be applied for 1 hour at 85°C, 105°C or 125°C) Note 3, 4				
Test	Temperature	Maximum operatir	ng temperature	Maximum operating temperature				
Methods and	Duration	1000+48,	∕−0 hrs	1000+48/-0 hrs				
Remarks	Applied voltage	Rated vol	tage × 2	Rated voltage × 2 Note 4				
i leinai ks	Charge/discharge current	50mA	max.	50mA max.				
	Recovery	6 to 24hr(Standard		24 ± 2 hrs (Standard condition) Note 5				

Note 1 The figures indicate typical specifications. Please refer to individual specifications in detail.

Note 2 Thermal treatment : Initial value shall be measured after test sample is heat-treated at $150+0/-10^{\circ}$ C for an hour and kept at room temperature for 24 ± 2 hours.

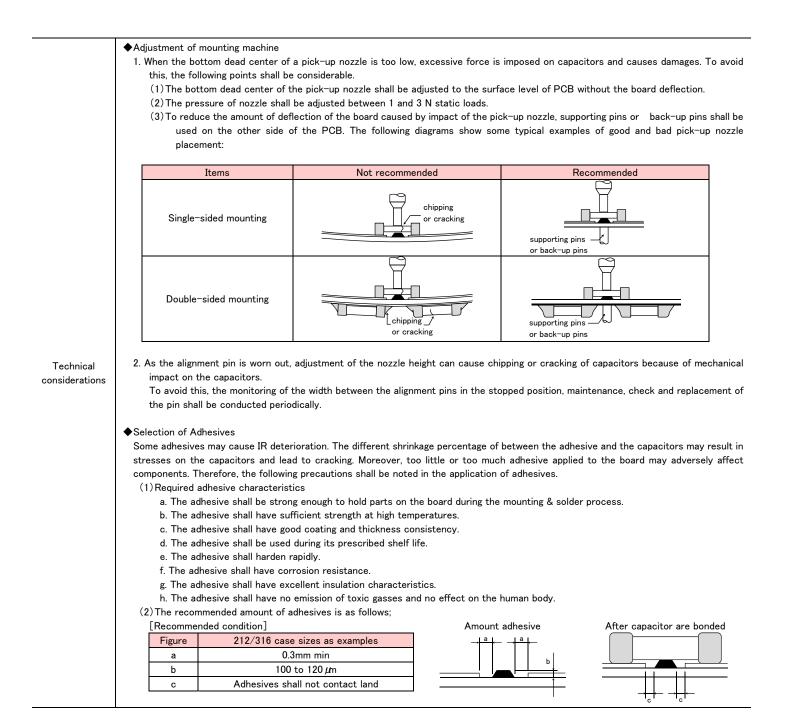
Note 3 Voltage treatment : Initial value shall be measured after test sample is voltage-treated for an hour at both the temperature and voltage specified in the test conditions, and kept at room temperature for 24±2hours.

Note 4 150% of rated voltage is applicable to some items. Please refer to their specifications for further information.


Note 5 Standard condition: Temperature: 5 to 35°C, Relative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa When there are questions concerning measurement results, in order to provide correlation data, the test shall be conducted under the following condition.

Temperature: 20±2°C, Relative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa Unless otherwise specified, all the tests are conducted under the "standard condition".

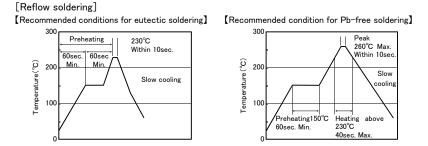
PRECAUTIONS


1. Circuit Design	
	♦Verification of operating environment, electrical rating and performance
	1. A malfunction of equipment in fields such as medical, aerospace, nuclear control, etc. may cause serious harm to human life or have severe social ramifications.
	Therefore, any capacitors to be used in such equipment may require higher safety and reliability, and shall be clearly differentiated from them used in general purpose applications.
Precautions	♦ Operating Voltage (Verification of Rated voltage)
	1. The operating voltage for capacitors must always be their rated voltage or less.
	If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages shall be the rated voltage or less.
	For a circuit where an AC or a pulse voltage may be used, the sum of their peak voltages shall also be the rated voltage or less.
	2. Even if an applied voltage is the rated voltage or less reliability of capacitors may be deteriorated in case that either a high frequency AC voltage or a pulse voltage having rapid rise time is used in a circuit.

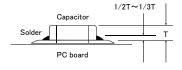
2. PCB Design											
-	♦Pattern config	urations (Desigr	n of Land-patt	erns)							
	1. When capacitors are mounted on PCBs, the amount of solder used (size of fillet) can directly affect the capacitor performance.										
	Therefore, the following items must be carefully considered in the design of land patterns:										
	(1)Excess	ive solder applie	ed can cause	mechanical st	resses which le	ead to chip bre	aking or crack	ing. Therefore,	please consider		
	appr	opriate land-patt	erns for prope	er amount of so	lder.						
Precautions	(2)When r	more than one co	omponent are	jointly soldered	l onto the same	e land, each con	nponent's solde	ring point shall	be separated by		
	sold	er-resist.									
	Pattern config	urations (Capac	itor layout on	PCBs)							
	After capacito	ors are mounted	on boards, the	ey can be subj	ected to mecha	anical stresses	in subsequent r	manufacturing p	orocesses (PCB		
	cutting, board	inspection, moun	iting of additio	nal parts, asser	mbly into the ch	iassis, wave solo	dering of the bo	ards, etc.). For	this reason, land		
	pattern config	pattern configurations and positions of capacitors shall be carefully considered to minimize stresses.									
	◆Pattern configurations (Design of Land-patterns)										
	The following	diagrams and tab	les show some	e examples of r	ecommended la	and patterns to	prevent excess	ive solder amou	ints.		
	(1)Recomme	ended land dimen	sions for typic	al chip capacit	ors						
		r Ceramic Capac	itors : Recomr	mended land dir	mensions		Land pat	terns for PCBs			
	(unit: mm)							Land pattern	0.11		
	Wave-so	_	010	010	0.05		Chip car	pacitor	Solder-resist		
	Туре	107	212	316	325	<u> </u>		─────┴──└─	`		
	Size L	1.6	2.0	3.2	3.2	c [/)		
	W	0.8	1.25	1.6	2.5	(┥┝╾┺╬	่╂┅╂╾┥ ┝──′	2		
	<u>A</u>	0.8 to 1.0	1.0 to 1.4	1.8 to 2.5	1.8 to 2.5			$\rightarrow \longleftarrow$			
	B	0.5 to 0.8	0.8 to 1.5	0.8 to 1.7	0.8 to 1.7						
	C	0.6 to 0.8	0.9 to 1.2	1.2 to 1.6	1.8 to 2.5						
							Chip ca	pacitor			
								W			
							1	<u></u>			
							Ĺ				
Technical	Reflow-s	oldering									
considerations	Туре	042	063	105	107	212	316	325	432		
	Sizo L	0.4	0.6	1.0	1.6	2.0	3.2	3.2	4.5		
	Size W	0.2	0.3	0.5	0.8	1.25	1.6	2.5	3.2		
	A	0.15 to 0.25	0.20 to 0.30	0.45 to 0.55	0.8 to 1.0	0.8 to 1.2	1.8 to 2.5	1.8 to 2.5	2.5 to 3.5		
	В	0.15 to 0.20	0.20 to 0.30	0.40 to 0.50	0.6 to 0.8	0.8 to 1.2	1.0 to 1.5	1.0 to 1.5	1.5 to 1.8		
	С	0.15 to 0.30	0.25 to 0.40	0.45 to 0.55	0.6 to 0.8	0.9 to 1.6	1.2 to 2.0	1.8 to 3.2	2.3 to 3.5		
	Note:Reco	ommended land s	ize might be d	lifferent accord	ing to the allow	ance of the size	e of the product	t.			
		5		£	1		LWD	0			
	-	Recommended lar	na aimensions	for reflow-sold	lering						
	(unit: mm)	105	107	212							
	Type	0.52	0.8	1.25							
	Size W	1.0	1.6	2.0				w			
	A	0.18 to 0.22	0.25 to 0								
	B	0.18 to 0.22	0.23 to 0.4								
	C	0.2 to 0.23	1.5 to 1.				<u>د ،</u>				
		0.0 10 1.1	1.0 to 1.	, 1.3 to	2.1		I L	I			

1–3. When PCB is split, the amount of mechanical stress on the capacitors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, please consider the PCB, split methods as well as chip location.

3. Mounting	
Precautions	 Adjustment of mounting machine When capacitors are mounted on PCB, excessive impact load shall not be imposed on them. Maintenance and inspection of mounting machines shall be conducted periodically. Selection of Adhesives When chips are attached on PCBs with adhesives prior to soldering, it may cause capacitor characteristics degradation unless the following factors are appropriately checked : size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, please contact us for further information.



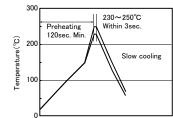
	♦ Selection of Flux
	Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use;
	(1) Flux used shall be less than or equal to 0.1 wt%(in Cl equivalent) of halogenated content. Flux having a strong acidity content shall not be applied.
	(2) When shall capacitors are soldered on boards, the amount of flux applied shall be controlled at the optimum level.
Precautions	(3)When water-soluble flux is used, special care shall be taken to properly clean the boards.
	◆ Soldering
	Temperature, time, amount of solder, etc. shall be set in accordance with their recommended conditions.
	Sn-Zn solder paste can adversely affect MLCC reliability.
	Please contact us prior to usage of Sn-Zn solder.
	♦ Selection of Flux
	1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate flux, or highly acidic flux is used, it may lead to corrosion of terminal electrodes or degradation of insulation resistance on the surfaces of the capacitors.
Technical considerations	1-2. Flux is used to increase solderability in wave soldering. However if too much flux is applied, a large amount of flux gas may be emitted and may adversely affect the solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system.
	1-3. Since the residue of water-soluble flux is easily dissolved in moisture in the air, the residues on the surfaces of capacitors in high
	humidity conditions may cause a degradation of insulation resistance and reliability of the capacitors. Therefore, the cleaning
	methods and the capability of the machines used shall also be considered carefully when water-soluble flux is used.

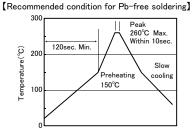

◆ Soldering

- · Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling.
- Therefore, the soldering must be conducted with great care so as to prevent malfunction of the components due to excessive thermal shock.
- Preheating : Capacitors shall be preheated sufficiently, and the temperature difference between the capacitors and solder shall be within 100 to 130°C.
- · Cooling : The temperature difference between the capacitors and cleaning process shall not be greater than 100°C.

Caution

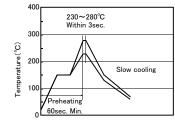
The ideal condition is to have solder mass(fillet)controlled to 1/2 to 1/3 of the thickness of a capacitor.

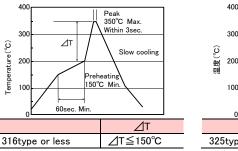


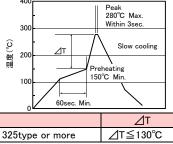

②Because excessive dwell times can adversely affect solderability, soldering duration shall be kept as close to recommended times as possible.

③Allowable number of reflow soldering : 2 times max.

[Recommended conditions for eutectic soldering]




Caution


OWave soldering must not be applied to capacitors designated as for reflow soldering only. OAllowable number of wave soldering : 1 times max.

[Recommended conditions for eutectic soldering] [Recommended condition for Pb-free soldering]

Caution

①Use a 50W soldering iron with a maximum tip diameter of 1.0 mm.
②The soldering iron shall not directly touch capacitors.
③Allowable number of hand soldering : 1 times max.

5. Cleaning							
Precautions	 Cleaning conditions 1. When PCBs are cleaned after capacitors mounting, please select the appropriate cleaning solution in accordance with the intended use of the cleaning. (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning condition shall be determined after it is verified by using actual cleaning machine that the cleaning process does not affect capacitor's characteristics. 						
Technical considerations	 The use of inappropriate cleaning solutions can cause foreign substances such as flux residue to adhere to capacitors or deteriorate their outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). Inappropriate cleaning conditions (insufficient or excessive cleaning) may adversely affect the performance of the capacitors. In the case of ultrasonic cleaning, too much power output can cause excessive vibration of PCBs which may lead to the cracking of capacitors or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions shall be carefully checked; Ultrasonic output : 20 W/2 or less Ultrasonic frequency : 40 kHz or less Ultrasonic washing period : 5 min. or less 						

6. Resin coating a	and mold
	1. With some type of resins, decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the capacitor's performance.
Precautions	2. When a resin's hardening temperature is higher than capacitor's operating temperature, the stresses generated by the excessive heat may lead to damage or destruction of capacitors. The use of such resins, molding materials etc. is not recommended.

7. Handling	
	 Splitting of PCB 1. When PCBs are split after components mounting, care shall be taken so as not to give any stresses of deflection or twisting to the board. 2. Board separation shall not be done manually, but by using the appropriate devices.
Precautions	 Mechanical considerations Be careful not to subject capacitors to excessive mechanical shocks. (1) If ceramic capacitors are dropped onto a floor or a hard surface, they shall not be used. (2) Please be careful that the mounted components do not come in contact with or bump against other boards or components.

Precautions	♦Storage
	 To maintain the solderability of terminal electrodes and to keep packaging materials in good condition, care must be taken to contro temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions
	Ambient temperature : Below 30°C
	Humidity : Below 70% RH
	 The ambient temperature must be kept below 40°C. Even under ideal storage conditions, solderability of capacitor is deteriorated as time passes, so capacitors shall be used within 6 months from the time of delivery. Ceramic chip capacitors shall be kept where no chlorine or sulfur exists in the air. The capacitance values of high dielectric constant capacitors will gradually decrease with the passage of time, so care shall be taken to design circuits. Even if capacitance value decreases as time passes, it will get back to the initial value by a heat treatment at 150°C for 1hour.
Technical considerations	If capacitors are stored in a high temperature and humidity environment, it might rapidly cause poor solderability due to terminal oxidation and quality loss of taping/packaging materials. For this reason, capacitors shall be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors.

