Quad CMOS to PECL* Translator The MC10H352 is a quad translator for interfacing data between a CMOS logic section and the PECL section of digital systems when only a +5.0 Vdc power supply is available. The MC10H352 has CMOS compatible inputs and PECL complementary open—emitter outputs that allow use as an inverting/non–inverting translator or as a differential line driver. When the common strobe input is at a low logic level, it forces all true outputs to the PECL low logic state (\approx +3.2 V) and all inverting outputs to the PECL high logic state (\approx +4.1 V). The MC10H352 can also be used with the MC10H350 to transmit and receive CMOS information differentially via balanced twisted pair lines. - Single +5.0 V Power Supply - All VCC Pins Isolated On Chip - · Differentially Drive Balanced Lines - tpd = 1.3 nsec Typical # 2 MAXIMUM RATINGS | Symbol | Rating | Unit | | | | | |------------------|---|---|--|--|--|--| | Vcc | 0 to +7.0 | Vdc | | | | | | ٧I | 0 to V _{CC} | Vdc | | | | | | lout | 50
100 | mA | | | | | | TA | 0 to +75 | °C | | | | | | T _{stg} | -55 to +150
-55 to +165 | ů | | | | | | | V _{CC} V _I I _{out} | V _{CC} 0 to +7.0 V _I 0 to V _{CC} lout 50 100 T _A 0 to +75 T _{stg} -55 to +150 | | | | | #### ELECTRICAL CHARACTERISTICS (VCC = VCC1 = VCC2 = 5.0 V + 5.0%) | Characteristic | | 0° | | 25° | | 75° | | | |---|---------------------|------|--------------|------|--------------|------|--------------|------| | | Symbol | Min | Max | Min | Max | Min | Max | Unit | | Power Supply
Current | ECL | _ | 50 | _ | 45 | _ | 50 | mA | | | TTL | | 20 | _ | 15 | _ | 20 | mA | | Reverse Current
Pins 7, 8, 12, 14
Pin 9 | IR | _ | 25
100 | _ | 20
80 | _ | 25
100 | μА | | Forward Current
Pins 7, 8, 12, 14
Pin 9 | ļĖ | = | -0.8
-3.2 | _ | -0.6
-2.4 | _ | -0.8
-3.2 | mA | | Input Voltage
Breakdown | V _{(BR)in} | 5.5 | _ | 5.5 | _ | 5.5 | _ | Vdc | | Input Clamp Voltage
(I _{in} = -18 mA) | VI | _ | -1.5 | _ | -1.5 | _ | -1.5 | Vdc | | High Output
Voltage (1) | VOH | 3.98 | 4.16 | 4.02 | 4.19 | 4.08 | 4.27 | Vdc | | Low Output
Voltage (1) | VOL | 3.05 | 3.37 | 3.05 | 3.37 | 3.05 | 3.37 | Vdc | | High Input Voltage | VIΗ | 3.15 | - | 3.15 | _ | 3.15 | _ | Vdc | | Low Input Voltage | VIL | | 1.5 | _ | 1.5 | | 1.5 | Vdc | ## (1) With VCC at 5.0 V. VOH/VOL change 1:1 with VCC. *Positive Emitter Coupled Logic ### MC10H352 L SUFFIX CERAMIC PACKAGE CASE 732-03 P SUFFIX PLASTIC PACKAGE CASE 738-03 FN SUFFIX PLCC CASE 775-02 #### **LOGIC DIAGRAM** B IN BOILT **BOUT** A OUT A IN A OUT D OUT DIN D OUT CIN COUT COMMON 9 COUT STROBE VCC (+5.0 VDC) = PINS 6, 11, 15, 20 GND = PIN 10 ### DIP PIN ASSIGNMENT Pin assignment is for Dual-in-Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 6-11. 3/93 © Motorola, Inc. 1996 2-94 REV 5 | Characteristic | Symbol | 0° | | 25° | | 75° | | | |-----------------------------|--------|-----|-----|-----|-----|-----|-----|------| | | | Min | Max | Min | Max | Min | Max | Unit | | Propagation Delay (1) | tpd | 0.4 | 1.9 | 0.4 | 2.0 | 0.4 | 2.1 | ns | | Rise Time (20% to 80%) | tr | 0.4 | 1.9 | 0.4 | 2.0 | 0.4 | 2.1 | ns | | Fall Time (80% to 20%) | tf | 0.4 | 1.9 | 0.4 | 2.0 | 0.4 | 2.1 | ns | | Maximum Operating Frequency | fmax | 150 | _ | 150 | _ | 150 | _ | MHz | ⁽¹⁾ Propagation delay is measured on this circuit from $V_{CC}/2$ on the input waveform to the 50% point on the output waveform. **NOTE:** 2 Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 flpm is maintained. Outputs are terminated through a 50-ohm resistor to V_{CC} - 2.0 Vdc.