Quad CMOS to PECL* Translator

The MC10H352 is a quad translator for interfacing data between a CMOS logic section and the PECL section of digital systems when only a +5.0 Vdc power supply is available. The MC10H352 has CMOS compatible inputs and PECL complementary open—emitter outputs that allow use as an inverting/non–inverting translator or as a differential line driver. When the common strobe input is at a low logic level, it forces all true outputs to the PECL low logic state (\approx +3.2 V) and all inverting outputs to the PECL high logic state (\approx +4.1 V).

The MC10H352 can also be used with the MC10H350 to transmit and receive CMOS information differentially via balanced twisted pair lines.

- Single +5.0 V Power Supply
- All VCC Pins Isolated On Chip
- · Differentially Drive Balanced Lines
- tpd = 1.3 nsec Typical

2 MAXIMUM RATINGS

Symbol	Rating	Unit				
Vcc	0 to +7.0	Vdc				
٧I	0 to V _{CC}	Vdc				
lout	50 100	mA				
TA	0 to +75	°C				
T _{stg}	-55 to +150 -55 to +165	ů				
	V _{CC} V _I I _{out}	V _{CC} 0 to +7.0 V _I 0 to V _{CC} lout 50 100 T _A 0 to +75 T _{stg} -55 to +150				

ELECTRICAL CHARACTERISTICS (VCC = VCC1 = VCC2 = 5.0 V + 5.0%)

Characteristic		0°		25°		75°		
	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Current	ECL	_	50	_	45	_	50	mA
	TTL		20	_	15	_	20	mA
Reverse Current Pins 7, 8, 12, 14 Pin 9	IR	_	25 100	_	20 80	_	25 100	μА
Forward Current Pins 7, 8, 12, 14 Pin 9	ļĖ	=	-0.8 -3.2	_	-0.6 -2.4	_	-0.8 -3.2	mA
Input Voltage Breakdown	V _{(BR)in}	5.5	_	5.5	_	5.5	_	Vdc
Input Clamp Voltage (I _{in} = -18 mA)	VI	_	-1.5	_	-1.5	_	-1.5	Vdc
High Output Voltage (1)	VOH	3.98	4.16	4.02	4.19	4.08	4.27	Vdc
Low Output Voltage (1)	VOL	3.05	3.37	3.05	3.37	3.05	3.37	Vdc
High Input Voltage	VIΗ	3.15	-	3.15	_	3.15	_	Vdc
Low Input Voltage	VIL		1.5	_	1.5		1.5	Vdc

(1) With VCC at 5.0 V. VOH/VOL change 1:1 with VCC. *Positive Emitter Coupled Logic

MC10H352

L SUFFIX CERAMIC PACKAGE CASE 732-03

P SUFFIX
PLASTIC PACKAGE
CASE 738-03

FN SUFFIX PLCC CASE 775-02

LOGIC DIAGRAM B IN BOILT **BOUT** A OUT A IN A OUT D OUT DIN D OUT CIN COUT COMMON 9 COUT STROBE VCC (+5.0 VDC) = PINS 6, 11, 15, 20 GND = PIN 10

DIP PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 6-11.

3/93

© Motorola, Inc. 1996

2-94

REV 5

Characteristic	Symbol	0°		25°		75°		
		Min	Max	Min	Max	Min	Max	Unit
Propagation Delay (1)	tpd	0.4	1.9	0.4	2.0	0.4	2.1	ns
Rise Time (20% to 80%)	tr	0.4	1.9	0.4	2.0	0.4	2.1	ns
Fall Time (80% to 20%)	tf	0.4	1.9	0.4	2.0	0.4	2.1	ns
Maximum Operating Frequency	fmax	150	_	150	_	150	_	MHz

⁽¹⁾ Propagation delay is measured on this circuit from $V_{CC}/2$ on the input waveform to the 50% point on the output waveform. **NOTE:**

2

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 flpm is maintained. Outputs are terminated through a 50-ohm resistor to V_{CC} - 2.0 Vdc.