LV8714TA

Advance Information

Monolithic Linear IC PWM Constant-Current Control Stepper Motor Driver

Overview

LV8714TA is a 4-channel H-bridge driver IC. It is ideally suited for driving stepping motors used in CCTV and POS printer.

Function

- 4ch PWM current control H-bridge driver incorporated
- BiCDMOS process IC
- Low on resistance (Upper: 0.6Ω, Lower: 0.3 Ω, Total of upper and lower: 0.9Ω; Ta=25°C, Io=1.5A)
- Available constant current control less RF resistance
- Built-in thermal shutdown circuit
- · Built-in Output short-circuit protection circuit

TQFP48 EP 7×7

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Condition	Rating	Unit
Motor supply voltage	VMmax	VM1, VM2, VM3, VM4 18		V
Logic input voltage	VINmax	PS, ENA1, IN1, ENA2, IN2, ENA3, IN3, ENA4, IN4	6	V
Output peak current	lopeak	Each 1ch, tw≤10m, duty 20%	1.75	А
Output current	Iomax	Each 1ch	1.5	А
Allowable power dissipation	Pd max	*	4.86	W
Operating temperature	Topr		–20 to 85	°C
Storage temperature	Tstg		–55 to 150	°C

* Specified circuit board : 90mm× 90mm× 1.6mm, glass epoxy 4-layer board, with backside mounting.

Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.

Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature,

high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ORDERING INFORMATION

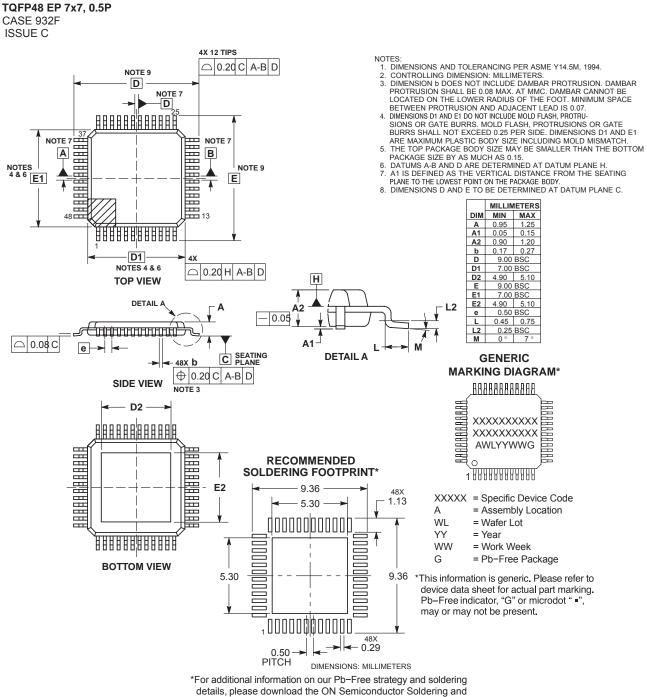
See detailed ordering and shipping information on page 13 of this data sheet.

71114NK No.A2352-1/13

Recommended Operating Conditions at Ta = 25°C

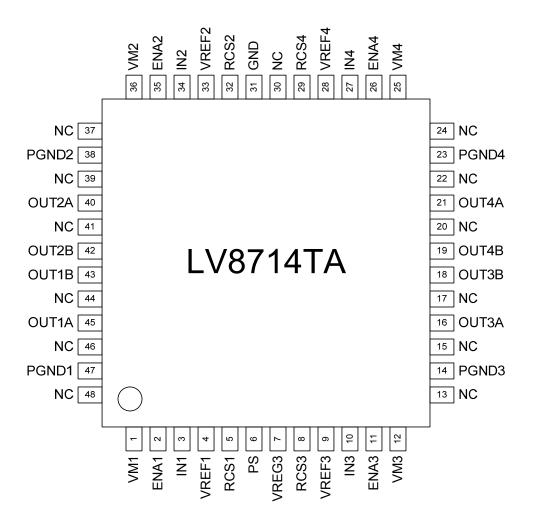
Parameter	Symbol	Condition	Rating	Unit
Motor supply voltage range	VM	VM1, VM2, VM3, VM4	4 to 16.5	V
Logic input voltage range	VIN	PS, ENA1, IN1, ENA2, IN2, ENA3, IN3, ENA4, IN4	–0.3 to 5.5	V
VREF input voltage range	VREF		0 to 1.5	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

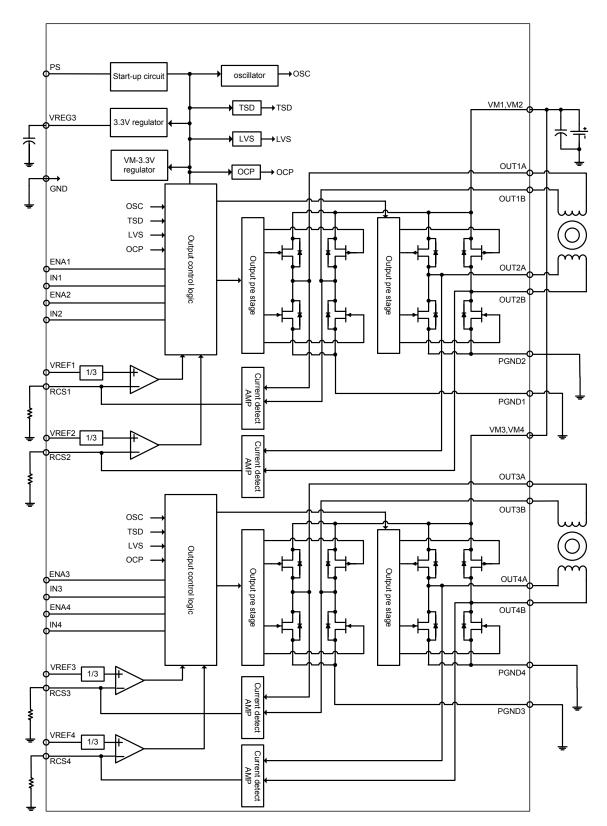

Electrical Characteristics at Ta = 25°C, VM = 12V, VREF = 0.6V

Parameter		Oursehal	Conditions	Ratings			11.21
		Symbol		min	typ	max	Unit
Standby m	ode current	IMstn	I(VM1)+I(VM2)+I(VM3)+I(VM4) PS="L", No load		0	1	μA
Supply	current	IM	I(VM1)+I(VM2)+I(VM3)+I(VM4) PS="H", No load		3.2	4.2	mA
Thermal shutdo	own temperature	TSD	Design guarantee	150	180		°C
Thermal hys	steresis width	ΔTSD	Design guarantee		40		°C
Regulator							
REG3 out	put voltage	VREG3		3	3.3	3.6	V
Output							
Output on	resistance	RonU	Io=-1.5A, Source-side		0.6	0.85	Ω
			lo=1.5A, Sink-side		0.3	0.5	Ω
Output leakage current		loleak	Vo=16.5V			10	μA
Diode forward voltage		VD	ID=-1.5A		1.2	1.6	V
Logic input							
Logic pin input current		linL	PS,ENA1,IN1,ENA2,IN2,ENA3,IN3,ENA4,IN4, VIN=0.8V	4.8	8	13.3	μA
		linH	VIN=3.3V	20	33	55	μA
Logic input	High	VinH	PS,ENA1,IN1,ENA2,IN2,ENA3,IN3,ENA4,IN4	2.0		5.5	V
voltage	Low	VinL		0		0.8	V
PWM current contr	ol		•				
VREF pin input current		IREF	VREF1,VREF2,VREF3,VREF4 VREF=1.5V	-0.5			μA
Current detection reference voltage		VREF	VREF1,VREF2,VREF3,VREF4 VREF=0.6V	0.18	0.2	0.22	V
Chopping	frequency	Fchop		100	125	150	kHz
Output current detection current		Ircs	RCS1,RCS2,RCS3,RCS4 Io=0.5A, RSC=0V	115	125	137	μA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

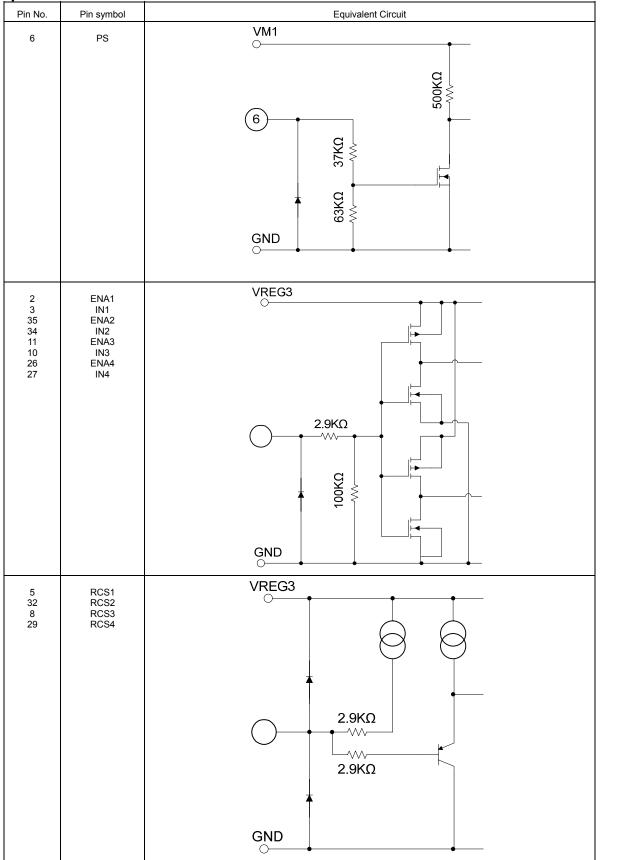

Package Dimensions

unit : mm



Mounting Techniques Reference Manual, SOLDERRM/D.

Pin Assignment


Block Diagram

Pin Functions

Pin No.	Pin name	Description
6	PS	Power save signal input pin
2	ENA1	
3	IN1	Channel1 Control signal input pin
35	ENA2	
34	IN2	Channel2 Control signal input pin
11	ENA3	
10	IN3	Channel3 Control signal input pin
26	ENA4	Channel4 Control signal input pin
27	IN4	
4	VREF1	Channel1 current setting reference voltage input pin
33	VREF2	Channel2 current setting reference voltage input pin
9	VREF3	Channel3 current setting reference voltage input pin
28	VREF4	Channel4 current setting reference voltage input pin
5	RCS1	Channel1 output current detecting resistor connection pin
32	RCS2	Channel2 output current detecting resistor connection pin
8	RCS3	Channel3 output current detecting resistor connection pin
29	RCS4	Channel1 output current detecting resistor connection pin
7	VREG3	Internal power supply capacitor connection pin.
31	GND	Ground
1	VM1	Motor power supply pin
36	VM2	Motor power supply pin
12	VM3	Motor power supply pin
25	VM4	Motor power supply pin
45	OUT1A	Channel1 OUTA output pin
43	OUT1B	Channel1 OUTB output pin
40	OUT2A	Channel2 OUTA output pin
42	OUT2B	Channel2 OUTB output pin
16	OUT3A	Channel3 OUTA output pin
18	OUT3B	Channel3 OUTB output pin
21	OUT4A	Channel4 OUTA output pin
19	OUT4B	Channel4 OUTB output pin
47	PGND1	Channel1 power system GND
38	PGND2	Channel2 power system GND
14	PGND3	Channel3 power system GND
23	PGND4	Channel4 power system GND
13,15,17,20,2 2,24,37,39,41 ,44,46,48	NC	No Connect (No internal connection to the IC)

Equivalent Circuit

Continued on next page.

ontinued from	preceding page.	
Pin No.	Pin symbol	Equivalent Circuit
1 47 45 43 36 38 40 42 12 14 16 18 25 23 21 19	VM1 PGND1 OUT1A OUT1B VM2 PGND2 OUT2A OUT2B VM3 PGND3 OUT3A OUT3A OUT3B VM4 PGND4 OUT4A OUT4B	
4 33 9 28	VREF1 VREF2 VREF3 VREF4	VREG3
7	VREG3	CND CND CND CND CND CND CND CND CND CND

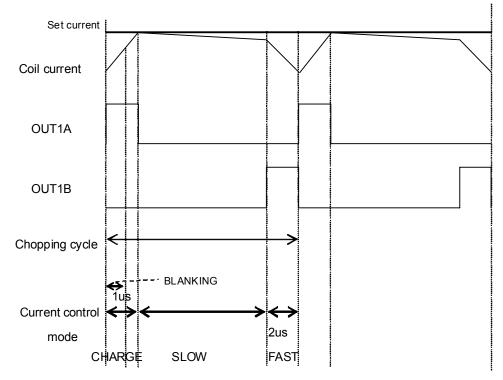
Description of operation

1. Input pin function

(1-1) Chip enable function

This IC is switched between standby and operating mode by setting the PS pin. In standby mode, the IC is set to power-save mode and all logic is reset. In addition, the internal regulator circuit do not operate in standby mode.

PS	Mode	Internal regulator
L or Open	Standby mode	Standby
Н	Operating mode	Operating


(1-2) Output control signal logic

Input signal		Output		Function
ENA*	IN*	OUT*A	OUT*B	
L	-	Off	Off	*ch_Stanby
Н	L	High	Low	*ch_CW (Forword)
Н	Н	Low	High	*ch_CCW (Reverse)

2. PWM constant-current control

LV8714TA performs constant current control of coil current by PWM chopping of the output pin, as opposed to the output detection current set up by connecting external resistance to RCS pin.

(2-1)Constant-current control time chart

(2-2)Detection current setting method

Based on the voltage input to the VREF pin and the resistance connected between RCS and GND, the output current that is subject to the constant-current control is set using the calculation formula below:

lout = (VREF/3)/RCS × 4000

e.g. VREF = 0.6V,RCS = 1kohm

lout = (0.6V/3) / 1kohm x 4000 = 0.8A

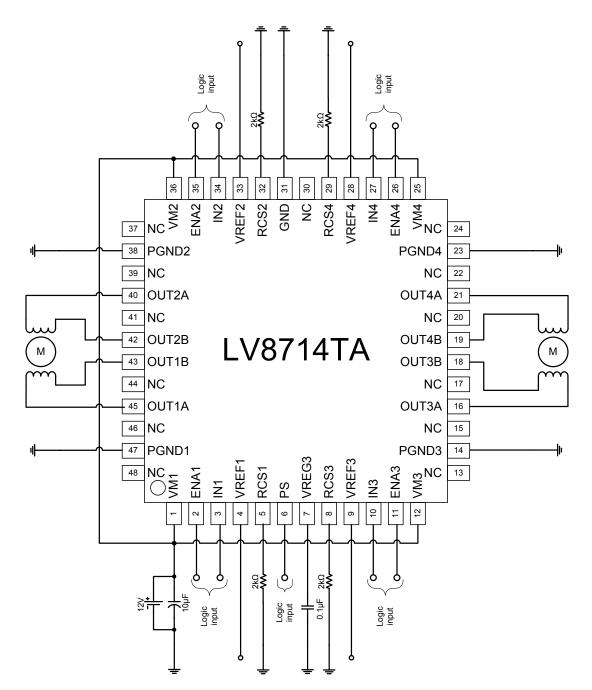
3. Output short-circuit protection current

Built-in output short-circuit protection circuit makes output to enter in stand-by mode. This function prevents the IC from damaging when the output shorts circuit by a voltage short or a ground short, etc.

When output short state is detected for 2µs, short-circuit detection circuit state the operating and output is once turned OFF. Subsequently, the output is turned ON again after the timer latch period (typ. 128µs). If the output remains in the short-circuit state, turn OFF the output, fix the output to the wait mode.

When output is fixed in stand-by mode by output short protection circuit, output is released the latch by setting PS = "L".

The output short-circuit protection circuit doesn't secure protection and the destruction prevention of the set because it becomes operation by the area where ratings Iomax=1.5A of the output current was exceeded.


4. Thermal shutdown circuit function

The Thermal shutdown circuit is built into, and the output is turned off when junction temperature Tj exceeds 180°C. The value of hysteresis and when it falls, the temperature drives the output again (automatic restoration).

The overheating protection circuit doesn't secure protection and the destruction prevention of the set because it becomes operation by the area where ratings Tjmax=150°C of the junction temperature was exceeded.

TSD = 180°C (typ) ∆TSD = 40°C (typ)

Application Circuit Example

Setting of constant current When VREF = 0.9V, RCS = $2k\Omega$ lout = (VREF/3) / RCS x 4000 = (0.9V/3) / $2k\Omega$ x 4000 = 0.6A

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LV8714TA-AH	TQFP48 EP 7×7 (Pb-Free / Halogen Free)	1000 / Tape & Reel

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC modults for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent reg