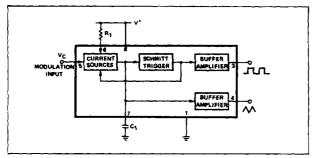
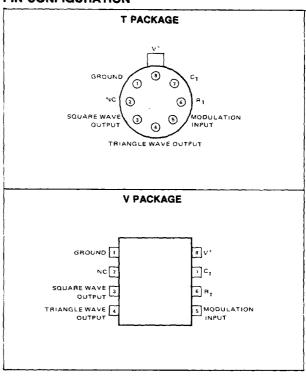
FEATURES

- . WIDE RANGE OF OPERATING VOLTAGE (10 to 24 volts)
- . VERY HIGH LINEARITY OF MODULATION
- . EXTREME STABILITY OF FREQUENCY (100 ppm/°C typical)
- . HIGHLY LINEAR TRIANGLE WAVE OUTPUT
- . HIGH ACCURACY SQUARE WAVE OUTPUT
- FREQUENCY PROGRAMMING BY MEANS OF A RESISTOR, CAPACITOR, VOLTAGE OR CURRENT
- FREQUENCY ADJUSTABLE OVER 10 TO 1 RANGE WITH SAME CAPACITOR

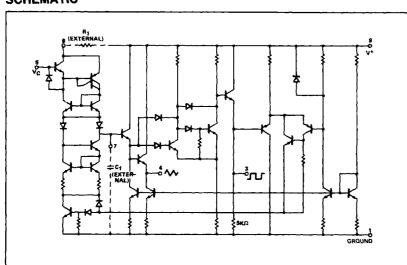
APPLICATIONS

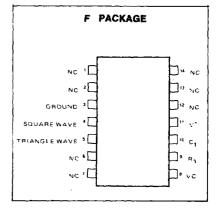

TONE GENERATORS
FREQUENCY SHIFT KEYING
FM MODULATORS
CLOCK GENERATORS
SIGNAL GENERATORS
FUNCTION GENERATORS

ABSOLUTE MAXIMUM RATINGS


Maximum Operating Voltage Storage Temperature Power Dissipation

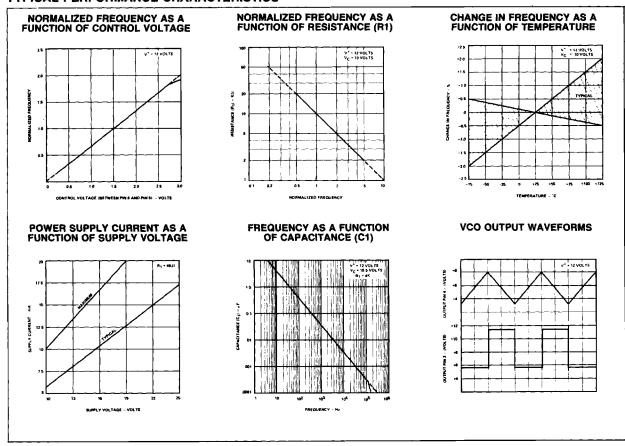
26V --65°C to 150°C 300mW


BLOCK DIAGRAM



PIN CONFIGURATION

SCHEMATIC



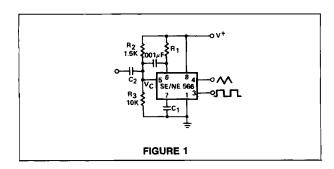
ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_{CC} = 12 \text{ V}$ unless otherwise stated

CHARACTERISTICS	SE566			NE566			UNITS
	MIN	TYP	MAX	MIN	TYP	MAX	UNIIS
GENERAL Operating Temperature Range Operating Supply Voltage Operating Supply Current	-55	7	125 24 12.5	0	7	70 24 12.5	°C V mA
VCO (Note 1) Maximum Operating Frequency Frequency Drift with Temperature Frequency Drift with Supply Voltage Control Terminal Input Impedance (Note 2) FM Distortion (±10% Deviation) Maximum Sweep Rate Sweep Range		1 100 1 1 0.2 1	0.75		1 200 2 1 0.2 1 10:1	1.5	MHz ppm/°C %/V MΩ % MHz
OUTPUT Triangle Wave Output- Impedance Voltage Linearity	1.9	50 2.4 0.2		1.9	50 2.4 0.5		Ω V pp %
Square Wave Output- Impedance Voltage Duty Cycle Rise Time Fall Time	5 45	50 5.4 50 20 50	55	5 40	50 5.4 50 20 50	60	Ω V pp % ns ns

NOTES:

TYPICAL PERFORMANCE CHARACTERISTICS

^{1.} The external resistance for frequency adjustment (R₁) must have a value between $2k\Omega$ and $20K\Omega$.


^{2.} The bias voltage (Vc) applied to the control terminal (pin 5) whould be in the range $4V + \leq V_C \leq V + ...$

OPERATING INSTRUCTIONS

The SE/NE 566 Function Generator is a general purpose voltage controlled oscillator designed for highly linear frequency modulation. The circuit provides simultaneous square wave and triangle wave outputs at frequencies up to 1 MHz. A typical connection diagram is shown in Figure 1. The control terminal (pin 5) must be biased externally with a voltage (VC) in the range

where V_{CC} is the total supply voltage. In Figure 1, the control voltage is set by the voltage divider formed with R2 and R3. The modulating signal is then ac coupled with the capacitor C2. The modulating signal can be direct coupled as well, if the appropriate dc bias voltage is applied to the control terminal. The frequency is given approximately by

$$f_0 \simeq \frac{2(V+\ -V_C)}{R_1C_1V+}$$

and R₁ should be in the range 2K <R₁ <20K Ω .

A small capacitor (typically $0.001\mu f$) should be connected between pins 5 and 6 to eliminate possible oscillation in the control current source.

If the VCO is to be used to drive standard logic circuitry, it may be desirable to use a dual supply of ± 5 volts as shown in Figure 2. In this case the square wave output has the proper dc levels for logic circuitry. RTL can be driven directly from pin 3. For DTL or T2L gates, which require a current sink of more than 1 mA, it is usually necessary to connect a $5K\Omega$ resistor between pin 3 and negative supply. This increases the current sinking capability to 2 mA. The third type of interface shown uses a saturated transistor between the 566 and the logic circuitry. This scheme is used primarily for T²L circuitry which requires a fast fall time (<50 nsec) and a large current sinking capability.