

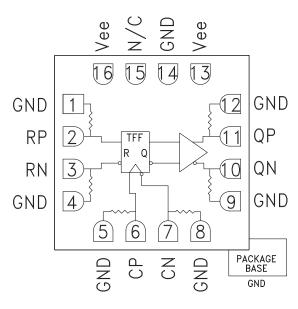
26 GHz, T TYPE FLIP-FLOP

Typical Applications

The HMC729LC3C is ideal for:

- Serial Data Transmission up to 26 Gbps
- High Speed Frequency Divider (up to 26 GHz)
- Broadband Test & Measurement
- RF ATE Applications

Features


Supports Clock Frequencies up to 26 GHz
Differential & Singe-Ended Operation
East Rise and Fall Times: 18 / 17 ps

Fast Rise and Fall Times: 18 / 17 ps Low Power Consumption: 270 mW typ.

Propagation Delay: 95 ps Single Supply: -3.3V

16 Lead Ceramic 3x3mm SMT Package: 9mm²

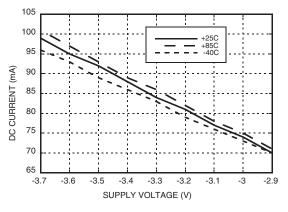
Functional Diagram

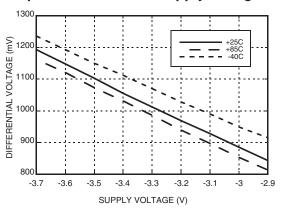
General Description

The HMC729LC3C is a T Flip-Flop w/Reset designed to support clock frequencies as high as 26 GHz. During normal operation, with the reset pin not asserted, the output toggles from its prior state on the positive edge of the clock. This results in a divide-by-two function of the clock input. Asserting the reset pin forces the Q output low regardless of the clock edge state (asynchronous reset assertion). Reversing the clock inputs allows for negative-edge triggered applications. All input signals to the HMC729LC3C are terminated with 50Ω to ground on-chip, and may be either AC or DC coupled. Outputs can be connected directly to a 50Ω terminated system, while DC blocking capacitors may be used if the terminating system is 50Ω to a non-ground DC voltage. The HMC729LC3C operates from a single -3.3V DC supply and is available in a ceramic RoHS compliant 3x3 mm SMT package.

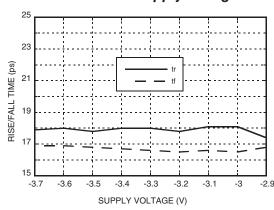
Electrical Specifications, $T_A = +25$ °C Vee = -3.3V

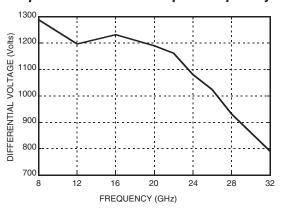
Parameter	Conditions	Min.	Тур.	Max	Units
Power Supply Voltage		-3.6	-3.3	-3.0	V
Power Supply Current			82		mA
Maximum Clock Rate			26		GHz
Input High Voltage		-0.5		0.5	V
Input Low Voltage		-1.0		0.0	V
Input Return Loss	Frequency <13 GHz		10		dB
Output Amplitude	Single-Ended, peak-to-peak		550		mVpp
Output Amplitude	Differential, peak-to-peak		1100		mVpp
Output High Voltage			-10		mV
Output Low Voltage			-570		mV
Output Rise / Fall Time	Differential, 20% - 80%		18 / 17		ps
Output Return Loss	Frequency <13 GHz		10		dB


v03 0209


Electrical Specifications, (continued)

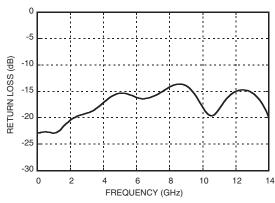
Parameter	Conditions	Min.	Тур.	Max	Units
Random Jitter Jr	rms			0.2	ps rms
Deterministic Jitter, Jd	peak-to-peak		2		ps, pp
Propagation Delay Clock to Q, td			95		ps
Propagation Delay Reset to Q, tdr			125		ps
Set Up & Hold Time, t _{SH}			6		ps


DC Current vs. Supply Voltage [1]

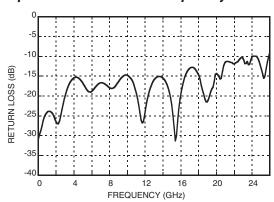

Output Differential vs. Supply Voltage [2]

Rise / Fall Time vs. Supply Voltage [2]

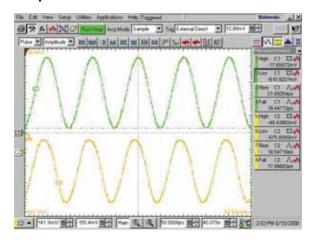
Output Differential vs. Input Frequency


[1] Frequency = 13 GHz

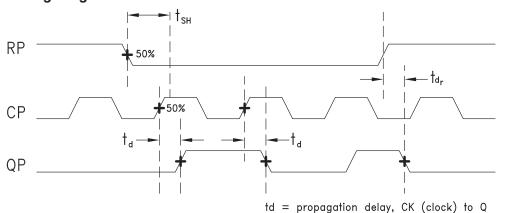
[2] Frequency = 24 GHz



Output Return Loss vs. Frequency


Input Return Loss vs. Frequency

Output Waveform



[1] Test Conditions:

tdr = propagation delay, R (reset) to Q.

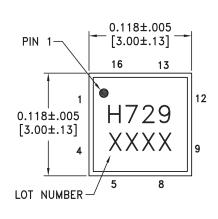
Waveform generated with a CW signal source input at 20 GHz. Diagram data presented on a Tektronix CSA 8000.

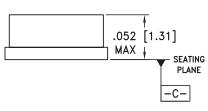
Timing Diagram

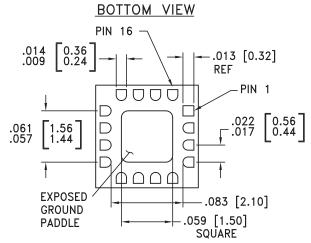
Truth Table

R	CK	Q	Q Next
0	L> H	0	1
0	L> H	1	0
1	X	0	0 (ASYNC)
1	Х	1	0 (ASYNC)
Notes: R= RP - RN CK = CP - CN Q = QP - QN		H - Negative voltage level L - Positive voltage level	

v03 0209




Absolute Maximum Ratings


Power Supply Voltage (Vee)	-3.75V to +0.5V	
Input Signals	-2V to +0.5V	
Output Signals	-1.5V to +1V	
Storage Temperature	-65°C to +150°C	
Operating Temperature	-40°C to +85°C	

Outline Drawing

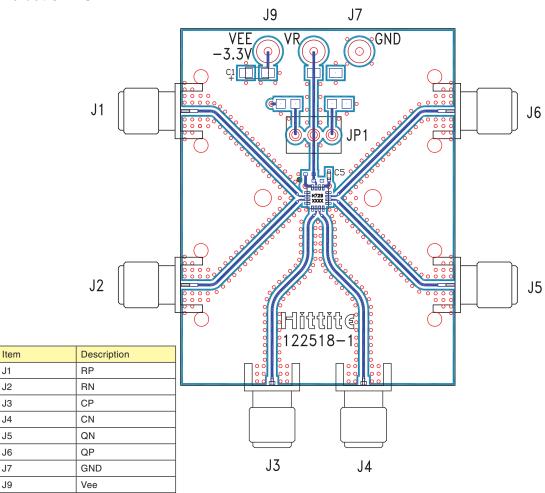
NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING:
- 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-
- 6. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
- 7. GROUND PADDLE MUST BE SOLDERED TO GND.

Pin Descriptions [1]

Pin Number	Function	Description	Interface Schematic
1, 4, 5, 8, 9, 12	GND	Signal Grounds	GND =
2, 3	RP, RN	Reset Inputs	GND 500 RP, RN
6, 7	CP, CN	Clock	GND 5002 CP, CN
10, 11	QP, QN	Data Output	GND 500 QP, QN
13, 16	Vee	Negative Supply	
14, Package Base	GND	Supply Ground	GND =
15	N/C	No Connection	

^[1] Contact HMC for alternate pinouts



v03.0209

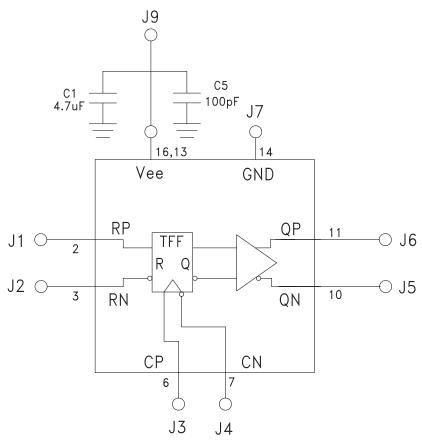
26 GHz, T FLIP-FLOP

Evaluation PCB

List of Materials for Evaluation PCB 123576 [1]

Item	Description	
J3, J4	PCB Mount 2.92mm RF Connectors	
J1, J2, J5, J6	PCB Mount SMA RF Connectors	
J7 - J9	DC Pin	
C1	4.7 μF Capacitor, Tantalum	
C5	100 pF Capacitor, 0402 Pkg.	
U1	HMC729LC3C High Speed Logic, T Type Flip-Flop	
PCB [2]	122518 Evaluation Board	

^[1] Reference this number when ordering complete evaluation PCB


The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed packaged base should be connected to GND. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Arlon 25FR

Application Circuit

