

APPROVAL SHEET

MULTILAYER CERAMIC CAPACITORS
Safety Certified X1/Y2, S2 Series
1808 to 2220 Sizes
NP0 & X7R Dielectrics
Halogen Free & RoHS Compliance

*Contents in this sheet are subject to change without prior notice.

Approval Sheet

1. DESCRIPTION

WTC's SAFETY CERTIFIED CAPACITORS are designed for surge or lightning immunity in modem facsimile and other equipments. The capacitors of series S2 are class X1/Y2 compliant respectively.

The green type capacitors in S2 and S3 series are manufactured by using environmentally friendly materials without lead or cadmium.

The terminations are composed of plated nickel and pure tin to feature the superior leaching resistance during soldering.

2. FEATURES

- a. High reliability and stability.
- b. Small size and high capacitance
- c. RoHS compliant
- d. Safety standard approval by EN 60384-14 : 2013 IEC 60384-14 : 2013 UL 60384-14 (Ed 2.0)
- e. Certificate number:

TUV: R50195920, TUV: R50381780

UL: E182369

f. HALOGEN compliant.

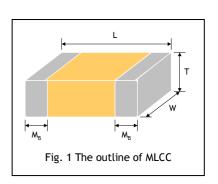
3. APPLICATIONS

- a. Modem.
- b. Facsimile.
- c. Telephone.
- d. Other electronic equipment for lighting or surge protection and isolation

4. HOW TO ORDER

<u>S2</u>	<u>42</u>	<u>N</u>	<u>100</u>	<u>J</u>	<u>502</u>	<u>C</u>	I
<u>Series</u>	<u>Size</u>	Dielectric	Capacitance	Tolerance	Impulse voltage	<u>Termination</u>	<u>Packaging</u>
\$2 =X1/Y2 Safety Certified	42 =1808 (4520) 43 =1812 (4532) 52 =2211 (5728) 55 =2220 (5750)	N =NP0 B =X7R	Two significant digits followed by no. of zeros. And R is in place of decimal point.	F= ±1.0% G= ±2.0%	Two significant digits followed by no. of zeros. And R is in place of decimal point.	C=Cu/Ni/Sn E=Cu+Conductive resin /Ni /Sn	T=7" reeled G=13" reeled
			eg.: 0R5=0.5pF 1R0=1.0pF 100=10x10 ⁰ =10pF		502: 5000V Impulse Voltage 602: 6000V Impulse Voltage		

5. EXTERNAL DIMENSIONS & STRUCTURE


5-1 Safety certified Caps.

Size Inch (mm)	L (mm)	W (mm)	T (mm)	M _B (mm)
1808 (4520)	4.50 +0.5/-0.3	2.00±0.25	1.25±0.10 (D)	0.50±0.25
1812 (4532)	4.50 +0.5/-0.3	3.20±0.40	1.40±0.15 (F) 1.60±0.20 (G)	0.50±0.25
2211 (5728)	5.70±0.40	2.80±0.30	2.00±0.20 (K) 2.50±0.30 (M)	0.60±0.30
2220 (5750)	5.70±0.40	5.00±0.40	2.80±0.30 (U)	0.60±0.30

5-2 Safety certified Caps, with soft termination

Size Inch (mm)	L (mm)	W (mm)	T (mm)	M _B (mm)
1808 (4520)	4.50 +0.6/-0.3	2.00±0.30	1.25±0.10 (D)	0.50±0.25
1812 (4532)	4.50 +0.6/-0.3	3.20±0.40	1.40±0.15 (F) 1.60±0.20 (G)	0.50±0.25
2211 (5728)	5.70±0.50	2.80±0.40	2.00±0.20 (K) 2.50±0.30 (M)	0.60±0.30
2220 (5750)	5.70±0.50	5.00±0.50	2.80±0.30 (U)	0.60±0.30

[#] Reflow soldering only is recommended

6. GENERAL ELECTRICAL DATA

	A FIT P						
Dielectric	NP0	X7R					
Size	1808, 1812, 2211	1808, 1812, 2211, 2220					
Capacitance	3pF to 680pF	100pF to 4700pF					
Capacitance tolerance	Cap.<10pF: D (±0.5pF) Cap.≥10pF: F (±1%), G (±2%), J (±5%), K (±10%), M (±20%)	J (±5%), K (±10%), M (±20%)					
Rated voltage (WVAC)	250Vac						
Q/ DF(Tan δ)	FCap<30pF: Q≥400+20C NC∈ Cap≥30pF: Q≥1000	DF≤2.5%					
Insulation resistance at Ur	≥10G	Ω					
Peak impulse voltage	5000V ~ 6	6000V					
Operating temperature	-55 to +1	25℃					
Capacitance characteristic	±30ppm/℃	±15%					
Termination	Ni/Sn (lead-free termination)						
Certified number	TUV: R50195920, TUV: R50	0381780, UL: E182369					
Test standard	EN 60384-14 : 2013, IEC 60384-14	4 : 2013, UL 60384-14 (Ed 2.0)					

^{*} NP0: Apply 1.0±0.2Vrms, 1.0MHz±10% for Cap≤1000pF and 1.0±0.2Vrms, 1.0kHz±10% for Cap>1000pF, at 25℃ ambient temperature.

7. PACKAGE DIMENSION AND QUANTITY

0:	Thistory (com)(0		Plastic tape		
Size	Thickness (mm)/S	ymbol	7" reel	13" reel	
	1.40±0.15	F	2k	-	
1808 (4520)	1.60±0.20	G	2k	8k	
	2.00±0.20	K	1k	6k	
	1.25±0.10	D	1k	-	
1812 (4532)	1.60±0.20	G	1k		
1012 (4552)	2.00±0.20	K	1k	-	
	2.50±0.30	M	0.5k	3k	
	1.60±0.20	G	1k	-	
0044 (5700)	2.00±0.20	K	1k	-	
2211 (5728)	2.50±0.30	M	0.5k	-	
	2.80±0.30	U	0.5k	-	
2220 (5750)	2.00±0.20	K	1k	-	
2220 (5750)	2.50±0.30	M	0.5k	2k	

Unit: pieces

^{*} X7R: Apply 1.0±0.2Vrms, 1.0kHz±10%, at 25℃ ambie nt temperature.

Approval Sheet

8. CAPACITANCE RANGE

	DIELECTRIC					NP0			
	SIZE	180	8	181		2211		221	1
PEAK	IMPULSE VOLTAGE		<u> </u>	5000			<u> </u>	600	
	Certificated	TUV IEC60384-14	UL 60384	TUV IEC60384-14	UL 60384	TUV IEC60384-14	UL 60384	TUV IEC60384-14	UL 60384
	3.0pF (3R0)		F	12000304-14	00004	12000304-14	0000-	12000304-14	0000-
	3.3pF (3R3)	F	F						
	3.9pF (3R9)	F	F						
	4.0pF (4R0)	F	F			К	K	K	K
	4.7pF (4R7)	F	F			К	K	К	K
	5.0pF (5R0)	F	F			K	K	K	K
	5.6pF (5R6)	F	F			K	K	K	K
	6.0pF (6R0)	F	F			К	K	K	K
	6.8pF (6R8)	F	F			К	K	K	K
	7.0pF (7R0)		F			K	K	K	K
	8.0pF (8R0)	F	F			K	K	K	K
	8.2pF (8R2)	F	F			K	K	K	K
	9.0pF (9R0)	F	F				K		K
	10pF (100)	F	F	D	D	K	K	K	K
	12pF (120)	F	F	D	D	K	K	K	K
	15pF (150)	F	F	, <u>D</u>	D	K	K	K	K
	18pF (180)	F	FS	F (目)	1.D	К	K	K	K
4)	22pF (220)	F	NEXT.	D	D	К	K	K	K
nçe	27pF (270)		// F	古四分	X D	K	K	K	K
Capacitance	33pF (330)	F /	F(E)	D D	O D	~/ _K	K	K	K
рас	39pF (390)	G/////	G	D	D _	74	K	К	K
ပိ	47pF (470)	G	G	D	D	K	K	K	K
	56pF (560)	G	<i>†⊈</i> /G	D	D]] K	K	K	K
	68pF (680)	G	G	D	D	K	K	M	M
	82pF (820)	G	GASS		LLIDICE	K-	K	M	M
	100pF (101)	K	K	D	D	5 K	K	U	U
	120pF (121)	K	K	D D	D	M	M		
	130pF (131)		K	D	D D	M	M M		
	150pF (151) 160pF (161)	K	A/K	hp.D.	D	M	M		
	180pF (181)	K	K/C	The Gog	D\	M	M		
	220pF (221)	K	K 4/7	101000000000	K	M	M		
	270pF (271)	K	K	VOLOGK CORP	K	M	M		
	300pF (301)		- '\	K	K	141	M		
	330pF (331)			K	K	M	M		
	390pF (391)			K	K	M	M		
	470pF (471)			K	K	M	M		
	560pF (561)					M	M		
	680pF (681)					M	М		
	720pF (721)								
	-, ()	I				1		1	

^{1.} The letter in cell is expressed the symbol of product thickness.

^{2.} For more information about products with special capacitance or other data, please contact WTC local representative.

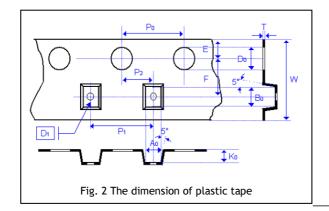
	DIELECTRIC				Х7	'R						
	SIZE	180	8	181	2	221	1	2220)			
PEA	K IMPULSE VOLTAGE				500	00						
	Certificated	TUV IEC60384-14	UL 60384	TUV IEC60384-14	UL 60384	TUV IEC60384-14	UL 60384	TUV IEC60384-14	UL 60384			
	100pF (101)	G	G			G	G					
	120pF (121)		G			G	G					
	130pF (131)		G			G	G					
	150pF (151)	G	G	G	G	G	G					
	160pF (161)		G		G		G	K	K			
	180pF (181)	G	G	G	G	G	G	K	K			
	220pF (221)	G	G	G	G	G	G	K	K			
	270pF (271)	K	K	G	G	G	G	K	K			
	300pF (301)		K		G		G		K			
	330pF (331)	K	K	G	G	G	G	K	K			
φ	390pF (391)	K	K	G	G	G	G	K	K			
auc	470pF (471)	K	K	G	G	K	K	K	K			
Capacitance	560pF (561)	K	K	G	G	K	K	K	K			
ара	680pF (681)	K	K	K	K	K	K	K	K			
ర	720pF (721)		K		K		K	K	K			
	820pF (821)	K	KEE	但K /	⇒ K	K	K	K	K			
	1,000pF (102)	K	K	M	M	М	М	K	K			
	1,200pF (122)	/sv	C. N.B.	与附份。	K VI	M	М	M	М			
	1,500pF (152)	1.	\$\frac{1}{2}\land{1}	X-102-103-1	YANG	M	М	M	М			
	1,800pF (182)	174177			K,	M	М	M	М			
	2,200pF (222)	11114	//**\			М	М	M	М			
	2,700pF (272)		'\}		TII	U	U	M	М			
	3,300pF (332)			754				M	М			
	3,900pF (392)		PASSI	E SYSTEM AL	LIANCE			M	М			
	4,700pF (472)		5					М	М			

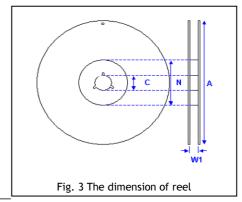
The letter in cell is expressed the symbol of product thickness.
 For more information about products with special capacitance or other data, please contact WTC local representative.

9. RELIABILITY TEST CONDITIONS AND REQUIREMENTS

No.	Item	Standard		Test Cor	ndition				Requirements		
1.	examination and	Method IEC 60384-1 4.1						No remarkable defect. Dimensions to confirm to individual specification sheet.			
	•	IEC 60384-1 4.2.2	* Class I : (C0G) Cap.≤1000pF, 1.0±0.2Vrms, 1MHz±10%. Cap.>1000pF, 1.0±0.2Vrms, 1KHz±10%.				* Capacitance is within specified tolerance. * C _R means rated capacitance for conform to the E6 series of preferred values given in IEC 60063.				
3.	(Dissipation	IEC 60384-1 4.2.3	,	* Class II : (X7R)				G)/D.F.	Remark	
	Factor) Tangent of loos angle		1.0±0.2Vrms,	1.0±0.2Vrms, 1KHz±10%.			Class I (0	C0G) -	0≥1000 0≥400+20C	Cap.≥30pF Cap.<30pF	
							Class II (X		0.F.≤2.5%	Сар.<Зорг	
4.	Coefficient	IEC 60384-21/22 4.6	Nith no electrical load. T.C. Operating Temp C0G(NP0) -55~125℃ at 25℃ X7R -55~125℃ at 25℃				T.C. COG(NP0) X7R	١ ١	Capacitance Ch Vithin ±30ppm/ Vithin ±15%		
5.	Voltage proof (Dielectric Strength)	IEC 60384-14 4.2.1	Y Capacitor * Duration: 60 * The charge of * The voltage	: 1075Vdc (4 : 1500Vac. 0 sec. current shall shall be raise age a rate no	not exceed 0.05		* No evider test.	nce of da	amage or flash o	over during	
6.	Resistance	IEC 60384-21/22 4.5.3	Vol.(V) V	/oltage Cur	arge Charge rrent Time 0mA 60 sec.		Class II (2	0G)	Requirements ≥100GΩ or RxC whichever is sn ≥10GΩ or RxC whichever is sn	naller ≥500Ω-F,	
7.	Solderability	IEC 60384-21/22 4.10	* Solder temp		±5℃(0201~1210 ±5℃(1808~2225		* 75% min.	coveraç	ge of all metalize	ed area.	
8.	Resistance to Soldering	IEC 60384-14		erature : 260		SO S	Dielectric	I.R.	Cap. Change	Q/D.F.	
	Heat	IEC 60384-21/22 4.9	* Preheating : immerse the	: 120 to 150℃ e capacitor in	C for 1 minute be a eutectic solde e after keeping a	El Alle	Class I (C0G)	≥1GΩ	Within ±2.5% o ±0.25pF, which is larger	ever ≤100% of initial	
		4.0		for 24±2 hrs.		it room	Class II (X7R)	≥1GΩ	Within ±7.5%	requireme nt	
9.	Temperature Cycle	IEC 60384-21/22 4.11	temperature	s and time.	ccording to the	1					
		4.11		mp.(℃)	Time(min.)		Dielectric	I.R.	Cap. Chang	e Q/D.F.	
			1 ten	n. operating np. +0/-3	30±3		Class I		Within ±2.5% or ±0.25pF,	⁶ ≤1.0(Q) ×	
			3 Ma	om temp. ax.operating	·		(C0G)	To me initial	whichever is	initial requirement	
			ten	np. +3/-0 om temp.	2~3		Class II	require ment	Within ±7.59	≤1.5(D.F.) ×	
		* Measurement to be made after keeping at room temperature for 24±2 hrs.			at room	(X7R)		**************************************	requirement		

No.	Item	Standard Method	Test Condition		Re	quirements	
10	Humidity	IEC 60384-14	* Test temp. : 40±2℃.	* No rem	arkable dam	age.	
10.	(Damp Heat) Steady State	4.12	* Humidity : 90~95% RH. * Test time : 500 +24/-0hrs.	Dielectr ic	I.R.	Cap. Change	Q/D.F.
			 * Applied voltage : 250Vac. * Measurement to be made after keeping at room temp. for 24±2 hrs (Class I) and 48±4 hrs (Class 	Class I (C0G)	(C0G) RxC≥	Within ±3.0% or ±2pF, whichever is larger	≤0.25%
			II).	Class II (X7R)	25Ω-F, whichever is smaller	Within ±15%	≤2.0(D.F.) × initial requireme nt
11.	Passive Flammability	IEC 60384-14 4.17 IEC 60384-1 4.38	* Volume sample: 21.56 mm ³ * Flame exposure time: 5 sec Max. * Category of flammability : C.	* Capacit	or didn't bur	n at all.	
12.	Active Flammability	IEC 60384-21/22 4.18	* The capacitors applied UR (250Vac). Then each sample shall be subjected to 20 discharges from a tank capacitor, charge to a voltage that, when discharged, plase Ui 2500V for X1Y2 across the capacitor under test. The interval between successive discharges shall be 5 sec.		eese cloth sh	nall not burn with a	flame.
13.	High Temperature Load (Endurance)	IEC 60384-14 4.14	* Test temp. : 125±3°C. * Test time: 1000 +48/-0 hrs.	* Cap. ch C0G with X7R with * D.F. val C0G≤0.2 X7R≤5.0 * I.R.≥1G	anical dama lange: lin ±5% or ±0 in ±20%. lue: 5%. %. iΩ.		
			CONVOLOGY CORPORATION				
14.	Resistance	IEC			arkable dam		
	to Flexure of Substrate	60384-21/22 4.8	shall be bent 1mm with a rate of 1mm/sec. $\begin{array}{c c} 20 \\ \hline & \\ \hline \\ \hline$	capacita	Within larger Within pacitance change under s	Change a ±3.0% or ±2pF, w a ±12.5% The state of the stat	nange of substrate


Multilayer Ceramic Capacitors


Approval Sheet

No.	Item	Standard Method	Test Condition	Requirements
15.	Adhesive Strength of Termination	IEC 60384-21/22 4.15 IEC 60384-1 4.13	* Capacitors mounted on a substrate. A force of 10N applied perpendicular to the place of substrate and parallel the line joining the center of terminations for 10±1 sec. Pressurizing force Capacitor P.C. Board	* No remarkable damage or removal of the terminations.
16.	Vibration	IEC 60384-1 4.17	* Reflow solder the capacitors on P. C. Board before test. * Vibration frequency: 10~55 Hz/min. * Total amplitude: 1.5mm. * Repeat the conditions for 2 hours each in 3 perpendicular directions.	* No remarkable damage. * Cap. change and Q/D.F. : To meet initial spec.
17.	Impulse Voltage	IEC 60384-14 4.13	* X1 : 4.0KV * Y2 : 5.0KV. * Number of impulse : 24 max.	* There shall be no permanent breakdown or flashover.

EMBOSSED TAPE DIMENSIONS

Size	18	08	18	12	22	11	22	20
Chip Thickness	1.25±0.10 1.40±0.15 1.60±0.20	2.00±0.20	1.25±0.10 1.60±0.20 2.00±0.20	2.50±0.30	1.60±0.20 2.00±0.20	2.50±0.30 2.80±0.30	2.00±0.20	2.50±0.30
A_0	<2.50	<2.50	<3.90	<3.90	<3.30	<3.30	<5.80	<5.80
Bo	<5.30	<5.30	<5.30	<5.30	<6.50	<6.50	<6.50	<6.50
Т	0.25±0.10	0.25±0.10	0.25±0.10	0.25±0.10	0.30±0.10	0.30±0.10	0.30±0.10	0.30±0.10
K ₀	<2.50	<2.50	<2.50	<3.50	<2.50	△ <3.50	<2.50	<3.50
W	12.0±0.30	12.0±0.30	12.0±0.30	12.0±0.30	12.0±0.30	12.0±0.30	12.0±0.30	12.0±0.30
\mathbf{P}_{0}	4.00±0.10	4.00±0.10	4.00±0.10	4.00±0.10	4.00±0.10	4.00±0.10	4.00±0.10	4.00±0.10
10xP₀	40.0±0.20	40.0±0.20	40.00±0.20	40.00±0.20	40.0±0.20	40.0±0.20	40.00±0.20	40.00±0.20
P ₁	4.00±0.10	4.00±0.10	8.00±0.10	8.00±0.10	8.00±0.10	8.00±0.10	8.00±0.10	8.00±0.10
P ₂	2.00±0.10	2.00±0.10	2.00±0.10	2.00±0.10	2.00±0.10	2.00±0.10	2.00±0.10	2.00±0.10
\mathbf{D}_0	1.50+0.10/-0	1.50+0.10/-0	1.50+0.10/-0	1.50+0.10/-0	1.50+0.10/-0	1.50+0.10/-0	1.50+0.10/-0	1.50+0.10/-0
D ₁	1.50±0.10	1.50±0.10	1.50±0.10	1.50±0.10	1.50±0.10	1.50±0.10	1.50±0.10	1.50±0.10
E	1.75±0.10	1.75±0.10	1.75±0.10	1.75±0.10	1.75±0.10	1.75±0.10	1.75±0.10	1.75±0.10
F	5.50±0.10	5.50±0.10	5.50±0.10	5.50±0.10	5.50±0.10	5.50±0.10	5.50±0.10	5.50±0.10

Size	1808, 1812	1808, 1812, 2211, 2220				
Reel size	7"	13"				
С	13.0+0.5/-0.2	13.0+0.5/-0.2				
W ₁	12.4+2.0/-0	12.4+2.0/-0				
A	178.0±1.0	330.0±1.0				
N	60.0+1.0/-0	100±1.0				

APPLICATION NOTES

■ Storage

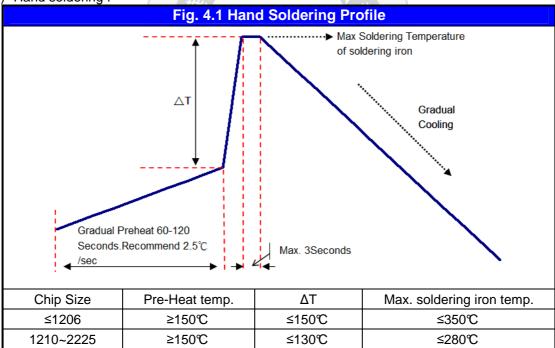
To prevent the damage of solderability of terminations, the following storage conditions are recommended: Indoors under 5 ~ 40℃ and 20% ~ 70% RH.

No harmful gases containing sulfuric acid, ammonia, hydrogen sulfide or chlorine.

Packaging should not be opened until the capacitors are required for use. If opened, the pack should be re-sealed as soon as is practicable. Taped product should be stored out of direct sunlight, which might promote deterioration in tape or adhesion performance. The product is recommended to be used within 12 months after shipment and checked the solderability before use.

Handling

Chip capacitors are dense, hard, brittle, and abrasive materials. They are liable to suffer mechanical damage, in the form of cracks or chips. Chip Capacitors should be handled with care to avoid contamination or damage. To use vacuum or plastic tweezers to pick up or plastic tweezers is recommended for manual placement. Tape and reeled packages are suitable for automatic pick and placement machine.

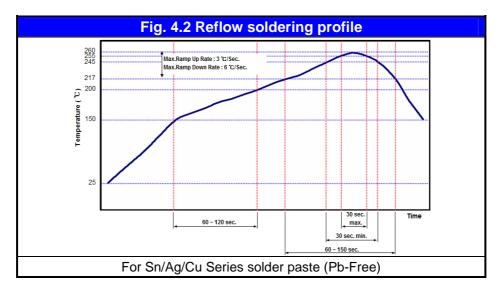

Preheat

In order to minimize the risk of thermal shock during soldering, a carefully controlled preheat is required. The rate of preheat should not exceed 3° C per secon d.

Soldering

Use middy activated rosin RA and RMA fluxes do not use activated flux. The amount of solder in each solder joint should be controlled to prevent the damage of chip capacitors caused by the stress between solder, chips, and substrate.

a.) Hand soldering:


^{*} Soldering iron tip diameter ≤1.0 mm and wattage max. 20W.

- * The required amount of solder shall be melted on the soldering tip.
- * The tip of iron should not contact the ceramic body directly.
- * The Capacitors shall be cooled gradually at room temperature after soldering.
- * Forced air cooling is not allowed.

^{*} The Capacitors shall be pre-heated and that the temperature gradient between the devices and the tip of the soldering iron.

Multilayer Ceramic Capacitors

b.) Reflow soldering:

Cooling

After soldering, cool the chips and the substrate gradually to room temperature. Natural cooling in air is recommended to minimize stress in the solder joint.

Cleaning

All flux residues must be removed by using suitable electronic-grade vapor-cleaning solvents to eliminate contamination that could cause electrolytic surface corrosion. Good results can be obtained by using ultrasonic cleaning of the solvent. The choice of the proper system is depends upon many factors such as component mix, flux, and solder paste and assembly method. The ability of the cleaning system to remove flux residues and contamination from under the chips is very important.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Walsin:

```
        S252B102K502CT
        S252B151K502CT
        S252B152K502CT
        S252B221K502CT
        S252B221K502CT

        S252B222K502CT
        S252B331K502CT
        S252B471K502CT
        S252B681K502CT
        S252N100J602CT
        S252N101J602CT

        S252N120J602CT
        S252N150J602CT
        S252N180J602CT
        S252N220J602CT
        S252N270J602CT
        S252N330J502CT

        S252N330J602CT
        S252N390J602CT
        S252N470J602CT
        S252N560J602CT
        S252N680J602CT
        S252N820J602CT

        S255B102K502CT
        S255B152K502CT
        S255B221K502CT
        S255B222K502CT
        S255B331K502CT
        S255B332K502CT

        S255B471K502CT
        S255B681K502CT
        S242B101K502CT
        S242B102K502CT
        S242B102K502CT

        S242B151K502CT
        S242B331K502CT
        S242B471K502CT
        S242B681K502CT
        S242N100J502CT

        S242N101J502CT
        S242N120J502CT
        S242N150J502CT
        S242N150J502CT
        S242N150J502CT
        S242N180J502CT

        S242N181J502CT
        S242N270J502CT
        S242N270J502CT
        S242N330J502CT
        S242N330J502CT
        S242N330J502CT
        S242N380J502CT
        S242N380J502CT
        S242N380J502CT
        S243B102K502CT
```