

Spec No. :DS86-2017-0014 Effective Date: 06/30/2017 Revision: -

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

LITE-ON Technology Corp. / Optoelectronics No.90,Chien 1 Road, Chung Ho, New Taipei City 23585, Taiwan, R.O.C. Tel: 886-2-2222-6181 Fax: 886-2-2221-1948 / 886-2-2221-0660 http://www.liteon.com/opto

OPTICAL SENSOR LTR-706PS-01

Description

The **LTR-706PS-01** is an integrated low voltage I2C proximity sensor [PS] with built-in emitter, in a single miniature chipled lead-free surface mount package.

With built-in proximity sensor (VCSEL emitter and detector), LTR-706PS-01 offers the feature to detect object at a user configurable distance. This sensor features 2-level fault detection that allows further protection against un-intended VCSEL current trigger or surge caused by short circuit.

The sensor supports an interrupt feature that removes the need to poll the sensor for a reading which improves system efficiency. The sensor also supports several features that help to minimize the occurrence of false triggering. This CMOS design and factory-set one time trimming capability ensure minimal sensor-to-sensor variations for ease of manufacturability to the end customers.

Application

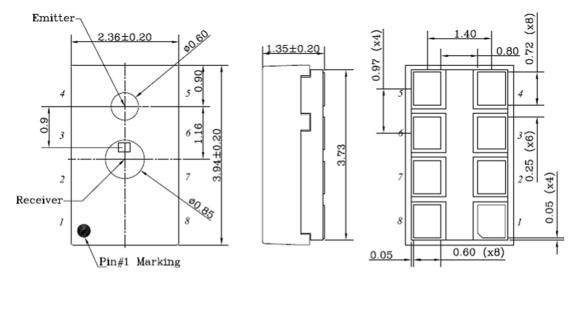
To control object detection

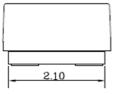
• Touch Panel Control in mobile/portable devices

Features

- I2C interface (Fast Mode: 400kbit/s)
- Ultra-small ChipLed L package
- Built-in temperature compensation circuit
- Low active power consumption with standby mode
- Supply voltage range from 2.7V to 3.6V capable of 1.7V logic voltage
- Operating temperature range from -30 °C to +70°C
- RoHS and Halogen free compliant

Proximity Sensor


- Built-in VCSEL driver, VCSEL emitter and detector with 2-level fault detection for VCSEL.
- > Programmable VCSEL drive settings
- > 11-bit effective resolution
- High ambient light suppression


Ordering Information

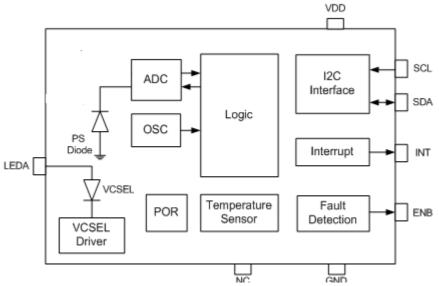
Part Number	Packaging Type	Package	Quantity
LTR-706PS-01	Tape and Reel	8-pins Chip-Led package	8000

1. Outline Dimensions and Pins Configuration

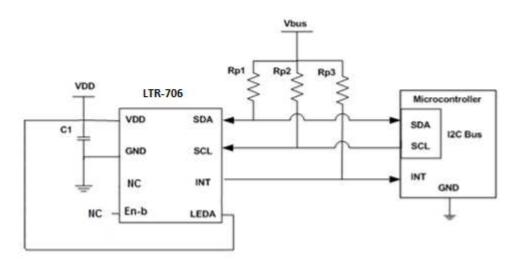
Pin-Out A	ssignment:
1. SDA	5. LEDA
2. INT	6. GND
3. NC	7. SCL
4. En-b	8. VDD

Note:

LITEON[®]


OPTOELECTRONICS

1. All dimensions are in millimeters

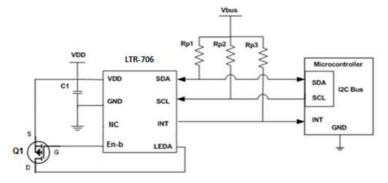

OPTICAL SENSOR LTR-706PS-01

2. Functional Block Diagram

3. Application Circuit

Application Circuit For Implementing Level1 VCSEL Fault Detection

Recommended Application Circuit Components


Component	Recommended Value
Rp1, Rp2, Rp3 ^[1]	1 k Ω to 10 k Ω
C1	1uF ± 20%, X7R Ceramic

3/35

OPTICAL SENSOR LTR-706PS-01

Application Circuit For Implementing Full (Level1&2) VCSEL Fault Detection

Recommended Application Circuit Components

Component	Recommended Value
Rp1, Rp2, Rp3 ^[1]	1 k Ω to 10 k Ω
C1	1uF ± 20%, X7R Ceramic
Q1	External PMOS transistor Ron<0.45Ω@Vgs = −2.7V, Cin≤150pF, Example : NTA4151PT1G

Notes:

[1] Selection of pull-up resistors value is dependent on bus capacitance values. For more details, please refer to I2C Specifications: http://www.nxp.com/documents/user manual/UM10204.pdf

Pin	I/O Type	Symbol	Description
1	IN/OUT	SDA	I ² C serial data.
2	OUT	INT	Level Interrupt Pin. This pin is an open drain output.
3	NC	NC	No Connect.
			Controlling external power switch for fault detection use. This is a digital output pin (not open drain).
4	4 OUT	En-b	Under normal operation this output pin will be at logic low so as to turn on the external PMOS switch which is connected to the VCSEL.
			When fault is detected this output pin will be at logic high and will shutdown the external PMOS and also the VCSEL.
5	IN	LED A	VCSEL LED Anode.
6	Ground	GND	Ground
7	IN	SCL	I ² C serial clock.
8	Supply	VDD	Power Supply Voltage

I/O Pins Configuration Table

OPTICAL SENSOR LTR-706PS-01

4. Rating and Specification

4.1 Absolute Maximum Rating at Ta=25°C

Parameter	Symbol	Rating	Unit
Supply Voltage	VDD	3.8	V
Digital Voltage Range	SCL, SDA, INT	-0.5 to 3.8	V
Digital Output Current	SCL, SDA, INT	-1 to 20	mA
Storage Temperature	T _{stg}	-40 to 85	°C
VCSEL Forward DC Current	lf	15	mA
Electrostatic Discharge Protection (Human Body Model JESD22-A114) ^[1]	V _{HBM}	2000	V

Notes:

[1] V_{HBM} for LEDA PAD is 200V due to VCSEL behavior.

Exceeding these ratings could cause damage to the sensor. All voltages are with respect to ground. Currents are positive into, negative out of the specified terminal.

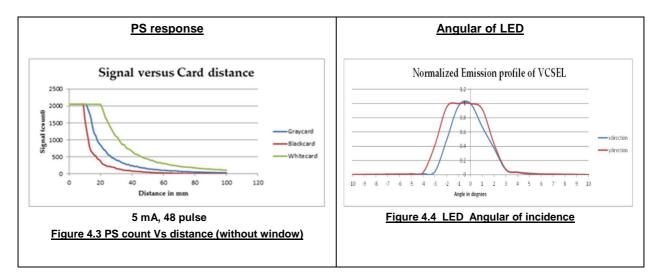
4.2 Recommended Operating Conditions (VDD= 3V, Ta = +25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	VDD	2.7		3.6	V
Interface Bus Power Supply Voltage	VIO	1.7		3.6	V
I2C Bus Input Pin High Voltage	VIH_SCL, VIH _SDA	1.2			V
I2C Bus Input Pin Low Voltage	VIL_SCL, VIL_SDA			0.6	V
Operating Temperature	T _{ope}	-30		70	°C

4.3 Electrical & Optical Specifications

All specifications are at VDD = 3.0V, T_{ope} = 25°C, unless otherwise noted.

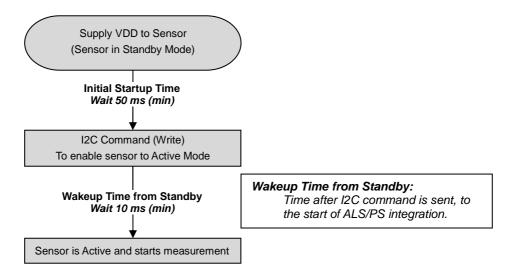
Parameter	Min.	Тур.	Max.	Unit	Condition
Supply Current		150		uA	PS in active mode
Standby Current			5	uA	Standby / Sleep Mode
Initial Startup Time			50	ms	Min wait time after power up (supply ramp-up to 2.4V) before sending I2C commands
Wakeup Time from Standby			10	ms	Max wait time after turning device from stand-by to active before measurements starts
Leakage Current	-5		5	uA	SDA, SCL, INT pins


OPTICAL SENSOR LTR-706PS-01

4.4 Characteristics Proximity Sensor

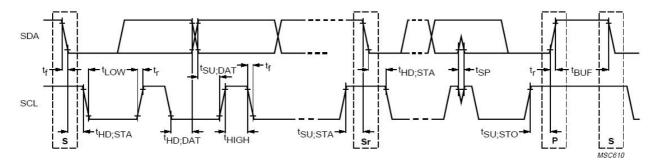
Parameter	Min.	Тур.	Max.	Unit	Condition
PS Resolution		11 bit			
Full ADC count			2047	count	
Detection Distance		100		mm	5mA, 48 pulses, 18% Gray Card
No of VCSEL Pulse	1		64	pulses	
VCSEL Pulse Frequency		125		kHz	
VCSEL Duty Cycle		25		%	
VCSEL Pulse Current	2		14	mA	
Peak Wavelength, λP	840	850	860	nm	IF = 9mA
Ambient Light Suppression			50k	lux	Direct Sunlight

4.5 Typical Device Parameter


(VDD = 3.0V, Ta=25°C, default power-up settings, un less otherwise noted)

OPTICAL SENSOR LTR-706PS-01

4.6 Startup Sequence



OPTICAL SENSOR LTR-706PS-01

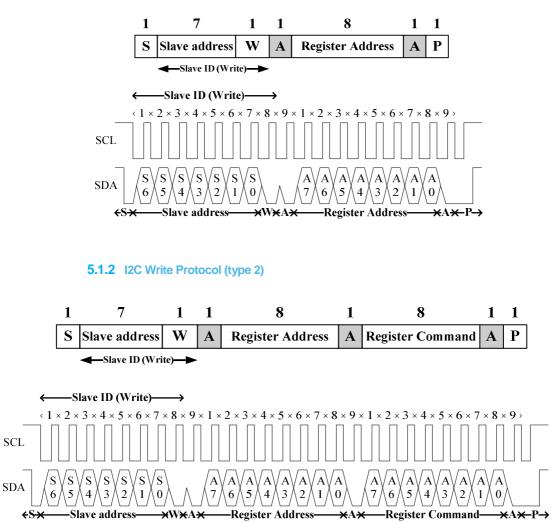
4.7 AC Electrical Characteristics

All specifications are at V_{DD} = 3.0V, T_{ope} = 25^{\circ}C, unless otherwise noted.

Parameter	Symbol	Min.	Max.	Unit
SCL clock frequency	f_{SCL}	1	400	kHz
Bus free time between a STOP and START condition	t _{BUF}	1.3		us
Hold time (repeated) START condition. After this period, the first clock pulse is generated	t _{HD;STA}	0.6		us
LOW period of the SCL clock	t _{LOW}	1.3		us
HIGH period of the SCL clock	t _{HIGH}	0.6		us
Set-up time for a repeated START condition	t _{SU;STA}	0.6		us
Set-up time for STOP condition	t _{SU;STO}	0.6		us
Rise time of both SDA and SCL signals	t _r	30	300	ns
Fall time of both SDA and SCL signals	t_f	30	300	ns
Data hold time	$t_{HD;DAT}$	30		S
Data setup time	$t_{SU;DAT}$	100		ns
Pulse width of spikes which must be suppressed by the input filter	t _{sp}	0	50	ns

Definition of timing for I²C bus

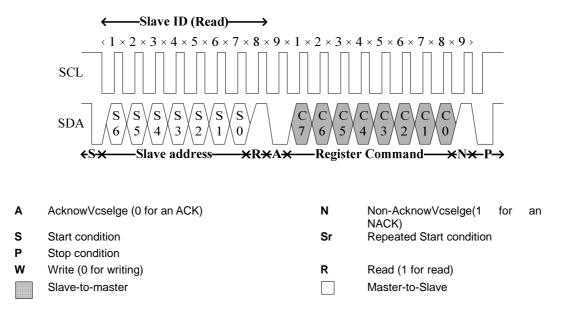
8/35


5. Principle of Operation

OPTOELECTRONICS

5.1 I2C Protocol

LITEON®



5.1.3 I2C Read Protocol

5.2 I2C Slave Address

The 7 bits slave address for this sensor is 0x23H. A read/write bit should be appended to the slave address by the master device to properly communicate with the sensor.

	I ² C Slave Address								
Command	(0x23H) (0x23H)								(00011)
Type Bit7 Bit6 Bit5 Bit4 Bit3						Bit2	Bit1	Bit0	(0x23H)
Write	0	1	0	0	0	1	1	0	0x46H
Read	0	1	0	0	0	1	1	1	0x47H

6. Register Set

OPTOELECTRONICS

LITEON[®]

L

Address	R / W	Register Name	Description	Reset Value
0x80	R/W	CLK_ON register	Internal Clock control and SW reset	0x00
0x81	R/W	PS_CONTR	PS operation mode control	0x40
0x82	R/W	PS_LED	PS LED setting	0x76
0x83	R/W	PS_N_PULSES	PS number of pulses	0x01
0x84	R/W	PS_MEAS_RATE	PS measurement rate in active mode	0x04
0x86	R	PART_ID	Part Number ID and Revision ID	0x05
0x87	R	MANUFAC_ID	Manufacturer ID	0x05
0x90	R	PS_STATUS	PS new data status	0x00
0x91	R	PS_DATA_0	PS measurement data, lower byte	0x00
0x92	R	PS_DATA_1	PS measurement data, upper byte	0x00
0x93	R/W	INTERRUPT	Interrupt settings	0x00
0x94	R/W	INTERTUPT_PERSIST	PS interrupt persist setting	0x00
0x95	R/W	PS_THRES_UP_0	PS interrupt upper threshold, lower byte	0xFF
0x96	R/W	PS_THRES_UP_1	PS interrupt upper threshold, upper byte	0x07
0x97	R/W	PS_THRES_LOW_0	PS interrupt lower threshold, lower byte	0x00
0x98	R/W	PS_THRES_LOW_1	PS interrupt lower threshold, upper byte	0x00
0x9F	R/W	FAULT DETECTION	Fault detection control and status register	0x00
0xA0	R	FD STATUS	Fault detection status	0x00

11/35

6.1 CLK_ON Register (0x80)

The CLK_ON register can turn on the chip's internal clock to be able to run Fault Detection without turning ON the PS.

0x80		PS_CONTR (default = 0x00)									
	B7	B6	В5	B4	В3	B1	В0				
	Reserved		ON Clock		Reserved		SW reset	Reserved			

Field	Bits	Default	Туре	Descri	Description		
Reserved	7:6	00	RW		Must write 00		
	0		0	System clock OFF(default)			
ON CLOCK	CK 5 0 R/W	1	System clock ON				
Reserved	4:2	000			Must write 000		
SW/ Report	1	0	RW	0	No action (default)		
SW_Reset	I	0	r.vv	1	Reset registers to default value		
Reserved	0	0			Must write 0		

6.2 PS _CONTR Register (0x81)

The PS_CONTR register controls the PS operation modes. The PS sensor can be set to either standby mode or active mode. At either of these modes, the I²C circuitry is always active. The default mode after power up is standby mode. During standby mode, there is no PS measurement performed but I²C communication is allowed to enable read/write to all the registers. PS Gain controls the gain setting for the PS sensor. FTN/NTF EN controls the FTN/NTF Status Reporting.

0x81		PS_CONTR (default = 0x40)								
	B7	B6	B5	B4	B3	B2	B1	В0		
	Rese	Reserved		Reserved	PS	Gain	PS Mode	Reserved		

OPTICAL SENSOR LTR-706PS-01

Field	Bits	Default	Туре	Descri	ption
Reserved	7:6	01			Must be 01
	_		DAM	0	Disable FTN/NTF Status Reporting(default)
FTN/NTF_EN	5	0	R/W	1	Enable FTN/NTF Status Reporting
Reserved	4:2	000			Must be 0
PS Mode	1	0	R/W	1	Active Mode
PS Wode	I		D/ VV	0	Stand-by Mode(default)
Reserved	0	0			Reserved

6.3 PS_LED Register(0x82)

The PS_LED register controls the LED pulse modulation frequency, VCSEL current duty cycle and VCSEL peak current.

0x82	PS_VCSEL (default = 0x76)								
	B7	B6	В5	B4	В3	B2	B1	В0	
	Rese	erved	Res	served		VCSEL Pe	eak Current		

Field	Bits	Default	Туре	Descri	ption
Reserved	7:4	0111	R/W		Must write 0101
				0000	2mA
				0001	3mA
				0010	4mA
				0011	5mA
				0100	6mA
		0110		0101	7mA
			R/W	0110	8mA (default)
	3:0			0111	9mA
VCSEL Current				1000	10mA
				1001	11mA
				1010	12mA
				1011	13mA
				1100	14mA
				1101	Reserved
				1110	Reserved
			-	1111	Reserved

6.4 PS_N_Pulses Register (0x83)

The PS_N_Pulses register controls the number of VCSEL pulses to be emitted.

0x83		PS_N_Pulses (default = 0x01)									
	B7	B6	B6 B5 B4 B3 B2 B1 B0								
	Reserved		No of VCSEL Pulse								

Field	Bits	Default	Туре	Description		
	7	0			Must be 0	
				0000000	Reserved	
		0000001	R/W	0000001	Number of pulses = 1 (default)	
VCSEL Pulse Count				0000010	Number of pulses = 2	
	6:0			0000011	Number of pulses = 3	
				0111111	Number of pulses = 63	
				1000000	Number of pulses = 64	

6.5 PS_MEAS_RATE Register (0x84)

The PS_MEAS_RATE register controls the timing of the periodic measurements of the PS in active mode. PS Measurement Repeat Rate is the interval between PS_DATA registers update.

0x84		PS_MEAS_RATE (default = 0x04)									
	B7	B7 B6 B5 B4 B3 B2 B1 B0									
			Reserved		PS N	leasurement	Rate				

Field	Bits	Default	Туре	Description	
Reserved	7:3	00000			
				000	6.125ms
				001	12.5ms
		100	RW	010	25ms
PS Measurement				011	50ms
Rate	2:0			100	100ms (default)
				101	200ms
				110	400ms
				111	800ms

OPTICAL SENSOR LTR-706PS-01

6.6 PART_ID Register (0x86) (Read Only)

The PART_ID register defines the part number and revision identification of the sensor.

0x86		PART_ID (default = 0x05)								
	B7	B7 B6 B5 B4 B3 B2 B1 B0								
		Part Number ID Revision ID								

Field	Bits	Default	Туре	Description
Part Number ID	7:2	000001	R	
Revision ID	1:0	01	R	

6.7 MANUFAC_ID Register (0x87) (Read Only)

The MANUFAC_ID register defines the manufacturer identification of the sensor.

0x87		MANUFAC_ID (default = 0x05)										
	B7	B7 B6 B5 B4 B3 B2 B1 B0										
		Manufacturer ID										

Field	Bits	Default	Туре	Description
Manufacturer ID	7:0	00000101	R	Manufacturer ID (0x05H)

15/35

6.8 PS_STATUS Register (0x90) (Read Only)

LITEON[®]

OPTOELECTRONICS

The PS_STATUS register stores the information about interrupt status and PS data status. New data means data has not been read yet. When the measurement is completed and data is written to the data register, the data status bit will be set to logic 1. When the data register is read, the data status bit will be set to logic 0. Interrupt status determines if the PS interrupt criteria are met. It will check if the PS measurement data is outside of the range defined by the upper and lower threshold limits.

0x90	PS_STATUS (default = 0x00)										
	B7	B7 B6 B5 B4 B3 B2 B1 B0									
			Rese	erved			PS Interrupt Status	PS Data Status			

Field	Bits	Default	Туре	Description		
Reserved	7:2	0	R	Reserve	ed	
DC Interrupt Status	4	0	Р	0	Interrupt signal INACTIVE (default)	
PS Interrupt Status	1	0	R	1	Interrupt signal ACTIVE	
PS Data Status	0	0	Р	0	OLD data (data already read), (default)	
PS Data Status	0	0	R	1	NEW data (first time data is being read)	

16/3

OPTICAL SENSOR LTR-706PS-01

6.9 PS_DATA_0 Register (0x91 / 0x92) (Read Only)

The PS ADC channel data are expressed as a 11-bit data spread over two registers. The PS_DATA_0 and PS_DATA_1 registers provide the lower and upper byte respectively. When the I²C read operation starts, both the registers are locked until the I²C read operation is completed. This will ensure that the data in the registers is from the same measurement even if an additional integration cycle ends during the read operation. New measurement data is stored into temporary registers and the PS_DATA registers are updated as soon as there is no on-going I²C read operation.

0x91	PS_DATA_0 (default = 0x00)											
	B7	B7 B6 B5 B4 B3 B2 B1 B0										
		PS Data Low										

0x92	PS_DATA_1 (default = 0x00)										
	B7	B7 B6 B5 B4 B3 B2 B1 B0									
			Reserved				PS Data Higi	h			

Field	Address	Bits	Default	Туре	Description		
PS Data, Low	0x8D	7:0	00000000	R		PS ADC lower byte data	
Reserved	0x8E	7:3	00000				
PS Data, High	0x8E	2:0	000	R		PS ADC upper byte data	

OPTICAL SENSOR LTR-706PS-01

6.10 INTERRUPT Register (0x93)

The INTERRUPT register controls the operation of the interrupt pin and functions. When the Interrupt Mode is set to 00, the INT output pin 2 is inactive / disabled and will not trigger any interrupt. However at this condition, the PS_STATUS register will still be updated.

Note that when this register is to be set with values other than its default values, it should be set before device is in Active mode.

0x93	INTERRUPT (default = 0x00)											
	B7	B7 B6 B5 B4 B3 B2 B1 B0										
	FTN	NTF	Reserved Interrupt Polarity									

Field	Bits	Default	Туре	Desc	ription
FTN	7	0	R	0	No far to near object detected (default)
ETIN	'	0	n	1	Far to near object detected
NTF	6	0	R	0	No near to far object detected (default)
	0	0	ĸ	1	Near to far object detected
Reserved	5:3	0	-	-	-
Interrupt Polarity	2	0	RW	0	INT pin is considered active when it is a logic 0 (default)
		-		1	INT pin is considered active when it is a logic 1
				00	Interrupt pin is INACTIVE / high impedance state (default)
Interrupt Mode	1:0	00	RW	01	PS measurement can trigger interrupt
				10	Reserved
				11	Reserved

OPTICAL SENSOR LTR-706PS-01

6.11 INTERRUPT PERSIST Register (0x94)

The INTERRUPT PERSIST register controls the N number of times the measurement data is outside the range defined by the upper and lower threshold limits before asserting the interrupt.

0x94		INTERRUPT PERSIST (default = 0x00)										
	B7	B7 B6 B5 B4 B3 B2 B1 B0										
		PS Persist Reserved										

Field	Bits	Default	Туре	Description				
				0000	Every PS value out of threshold range (default)			
PS persist	7:4	0000	RW	0001	1 consecutive PS values out of threshold range			
				1111	16 consecutive PS values out of threshold range			
Reserved	3:0	0000	RW	Reserve	d			

6.12 **PS_THRES** Register (0x95 / 0x96 / 0x97 / 0x98)

The PS_THRES_UP and PS_THRES_LOW registers determines the upper and lower limit of the interrupt threshold value respectively. These two values form a range and the interrupt function compares if the measurement value in PS_DATA registers is inside or outside the range. The interrupt function is active if the measurement data is outside the range defined by the upper and lower limits. The data format for PS_THRES must be the same as PS_DATA registers.

0x95		PS_THRES_UP_0 (default = 0xFF)										
	B7	B7 B6 B5 B4 B3 B2 B1 B0										
		PS Upper Threshold Low										

0x96		PS_THRES_UP_1 (default = 0x07)							
	B7	B7 B6 B5 B4 B3 B2 B1 B0							
		Reserved PS Upper Threshold High							

OPTICAL SENSOR LTR-706PS-01

0x97		PS_THRES_LOW _0 (default = 0x00)							
	B7	B7 B6 B5 B4 B3 B2 B1 B0							
				PS Lower Th	reshold Low	/			

0x98		PS_THRES_LOW_1 (default = 0x00)							
	B7	B7 B6 B5 B4 B3 B2 B1 B0							
		Reserved PS Lower Threshold High							

Field	Address	Bits	Default	Туре	Description
PS Upper Threshold Low	0x95	7:0	11111111	RW	PS upper threshold lower byte
Reserved	0x96	7:3	00000		Reserved
PS Upper Threshold High	0x96	2:0	111	RW	PS upper threshold upper byte
PS Lower Threshold Low	0x97	7:0	00000000	RW	PS lower interrupt threshold value, lower byte
Reserved	0x98	7:3	00000		Reserved
PS Lower Threshold High	0x98	2:0	000	RW	PS lower interrupt threshold value, upper byte

6.18 Fault Detection Control Register (0x9F) and Status (0xA0) Register

The FAULT DETECTION CONTROL register controls fault detection timing and enable fault detection function. Each PS cycle starts with a process to check whether there is a fault before the actual PS measurement. Two types of fault detection can be selected using Register 0x9F bit1, the Level1 and full (Level1&2) fault detection.

Level1 VCSEL Fault Detection

In this level of fault detection, the IC will check the VCSEL cathode whether it is shorted to ground potentially causing high current surge in the VCSEL. If it is shorted to ground the "VCSEL Fault" flag (Register 0xA0 bit 0) will be asserted. This fault detection works with the application circuit that does not require an external pmos transistor.

OPTICAL SENSOR LTR-706PS-01

Full (Level1&2) VCSEL Fault Detection

This 2-level fault detection works with the application circuit that requires an external PMOS transistor to switch the VCSEL to the power supply. In addition to the above Level1 fault detection, the IC will look for further external circuit failures focusing on the ENB output pin and the external PMOS transistor. In this fault check, the logic level of the ENB output pin (which is connected to the external PMOS gate) is measured by the IC to determine whether it is permanently stuck low or high (i.e. cannot be controlled). If the ENB output pin is found to be stuck low, the "ENB Gate stuck low" flag (Register 0xA0 bit 3) will be set. If the ENB output pin is found to be stuck high, the "ENB Gate stuck high" flag (Register 0xA0 bit 2) will be set. Following this stuck high and low test, the IC will also check whether the external PMOS transistor can be turned OFF. This is flagged as "ENB Fault" (Register 0xA0 bit 1). The IC will also check leakage current from VCSEL Cathode to ground. If there is a resistive short from VCSEL Cathode to ground which is 5Kohms and lower, this is flagged as "VCSEL leakage (Register 0xA0 bit 4)"

A list of flags corresponding to each checking process is as below:

- VCSEL leakage resistive short from VCSEL Cathode to ground which is < 5Kohms
- ENB Gate stuck low this flag reporting ENB output pin (i.e. external PMOS gate) stuck low
- ENB Gate stuck high this flag reporting ENB output pin (i.e. External PMOS gate) stuck high
- ENB Fault this flag reporting PMOS switch faulty (i.e. cannot turn OFF switch).
- VCSEL Fault this flag reporting VCSEL Cathode is shorted to ground which will cause high driving current to the VCSEL.

Besides flags reporting from FAULT DETECTION status register, an INTERRUPT will be generated from the IC to the host controller, regardless the settings of INTERRUPT Register (0x93, Bit 1:0). When fault is detected, the chip will send/pull ENB pin to high state and turn off the VCSEL. It is recommended to have host controller immediate attention once it received the interrupt signal, to switch off the VLED supply as fault detected.

FD Self Check (Register 0x9F bit4) – This is used when the user want to force a fault detection check. Normally, the fault detection check will be ON during PS enable state. Fault detection will not be active if the PS is in the OFF or DISABLE state. However the user can force a fault detection check when the PS is in the off state. This is done by setting the FD Self Check bit and also the ON CLOCK bit in the register 0x80. It is recommended to force a fault detection check whenever the device is power on so that fault can be immediately detected.

OPTICAL SENSOR LTR-706PS-01

0x9F		FAULT_DETECTION_CONTROL (default = 0x01)							
	B7	B7 B6 B5 B4 B3 B2 B1 B0							
		Reserved		FD Self Check		Reserved		FD Level	

Field	Bits	Default	Туре	Description		
Reserved	7:5	00	RW	Must b	Must be write as 00	
FD Self Check	4	0	0		Self Check Fault Detection disabled (default)	
PD Sell Check	4	0	-	1	Run Self Check Fault Detection	
Reserved	3:1	000		000 Must write 0		
ED Loval	0	0	RW	0	Level 2 Fault Detection	
FD Level	FD Level 0 0 R		r.vv	1	Level 1 Fault Detection (default)	

0xA0		FAULT_DETECTION_STATUS (default = 0x00)							
	B7	B6	В5	B4	В3	B2	B1	В0	
		Reserved		VCSEL leakage	ENB Gate stuck Iow	ENB Gate stuck high	ENB Fault	VCSEL Fault	

Field	Bits	Default	Туре	Description		
Reserved	7:5	00	R	Reserv	ed	
VCSEL leakage	4	0	R	0	No leakage (default)	
VCSEL leakage	4	0	ĸ	1	VCSEL leak to GND, level 2 FD only	
ENB Gate stuck low	3	0	R	0	ENB gate controllable (default)	
END Gale Sluck low	3	0	ĸ	1	ENB gate stuck at logic low, for level 2 FD	
END Cate study high	2	0	R	0	ENB gate controllable (default)	
ENB Gate stuck high	2	0	ĸ	1	ENB gate stuck at logic high, for level 2 FD	
	4	0	P	0	External CMOS switch normal (default)	
ENB Fault	1	0	R	1	External CMOS switch Faulty, for level 2 FD	
				0	VCSEL Cathode not short to GND (default)	
VCSEL FAULT	0	0	R	1	VCSEL Cathode short to GND, level 1 and level 2 FD	

OPTICAL SENSOR LTR-706PS-01

7 Application Information

7.5 Operating Modes

Stand-by Mode

The device is by default in stand-by mode after power-up. No measurement activity done in PS. I²C communication is allowed to be able to read/write to the registers. The device can be reset from MCU by setting appropriate register control (SW reset). Start-up sequence is exactly the same as that when power-on reset is triggered.

Active Mode

The PS can simultaneously be in active mode (see Fig 1). Measurement data is expected to be available within a known fixed time (refer to measurement time parameter from PS specification).

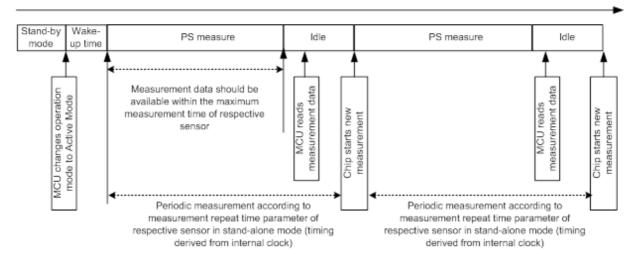
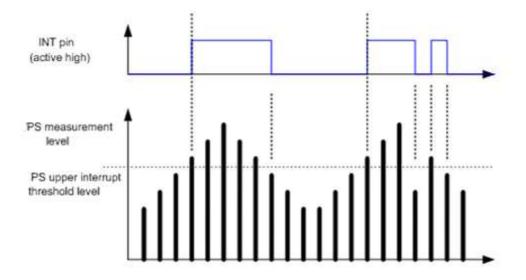
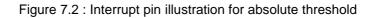


Figure 7.1 : PS measurement sequence

7.6 Interrupt Features

The interrupt function is active if PS measurements are outside of the upper and lower absolute threshold levels set in the appropriate threshold register. Refer to Figure 2 for the illustration. Only newly measured data is compared to the threshold levels set such that old data will not cause triggering of the INT pin if in case the threshold levels are changed in between measurements.


The status of interrupt can be monitored directly through the interrupt (INT) pin or by checking contents of the interrupt register. Interrupt pin can either be enable or disabled. Possible to invert interrupt output of LOW or HIGH state.


Interrupt pin IO requirements are exactly the same as those of the I2C bus pins SDA and SCL.

23/3

OPTICAL SENSOR LTR-706PS-01

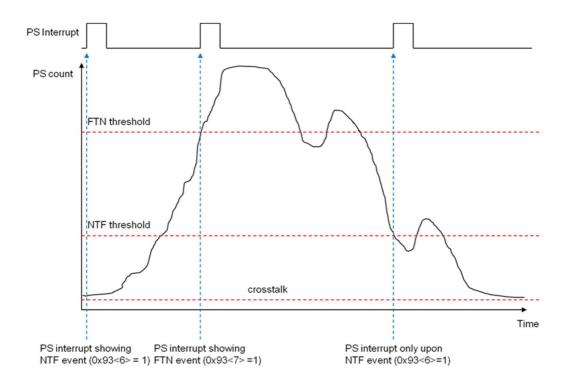
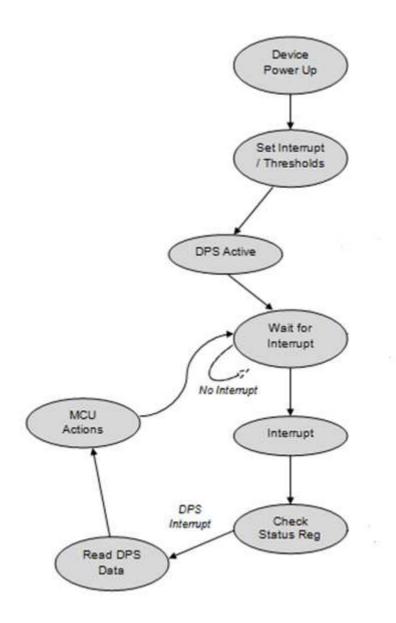


Figure 7.3 : Interrupt pin illustration FTN/NTF status reporting


Part No. : LTR-706PS-01 BNS-OD-FC002/A4

24/35

Below flow diagram illustrates the LTR-706PS-01 operation involving the use of Thresholds and interrupt.

Part No. : LTR-706PS-01 BNS-OD-FC002/A4

25/35

7.7 Example Pseudo Code

OPTOELECTRONICS

Control Registers

ITEON[®]

// The Control Registers define the operating modes and gain settings of the PS of LTR-706PS-01 // Default settings are 0x00 and 0x40 for PS registers (0x40).

Slave_Addr = 0x23

Register_Addr = 0x80

// Enable PS

Register_Addr = 0x81 Command = 0x42 WriteByte(Slave_Addr, Register_Addr, Command)

PS LED Registers

// The PS VCSEL Registers define the VCSEL pulse modulation pulse width, duty cycle and peak current. // Default setting is 0x76 (15.625kHz, 12.5% Duty Cycle, 6mA).

Slave_Addr = 0x23

Register_Addr = 0x82Command = 0x76

WriteByte(Slave_Addr, Register_Addr, Command)

PS LED Number of pulses

// Default setting is 0x76 (15.625kHz, 12.5% Duty Cycle, 6mA).

Slave_Addr = 0x23

Register_Addr = 0x83Command = 0x08 // Slave address of LTR-706PS-01 device

// Slave address of LTR-706PS-01 device

// Pulse Duty Cycle 12.5%, 32us pulse width, peak current 6mA

// Slave address of LTR-706PS-01 device

// Clock on register

// PS_CONTR register

// PS LED register

// PS_LED Register for Number of pulses
// Number of pulses = 8

WriteByte(Slave_Addr, Register_Addr, Command)

PS Measurement Rate

// The PS_MEAS_RATE register controls the PS measurement rate. // Default setting of the register is 0x04 (repeat rate 100ms)

Slave_Addr = 0x23

// Set PS Repeat Rate 50ms Register_Addr = 0x84 Command = 0x06 // Slave address of LTR-706PS-01 device

// PS_MEAS_RATE register // Meas rate = 400ms

WriteByte(Slave_Addr, Register_Addr, Command)

PS Status Register (Read Only)

// The PS_STATUS Register contains the information on Interrupt, PS data availability status.

OPTICAL SENSOR LTR-706PS-01

// This register is read only.

Slave_Addr = 0x23

// Read back Register Register_Addr = 0x90 ReadByte(Slave_Addr, Register_Addr, Data)	// PS_STATUS register address
Interrupt_Status = Data & 0x0A	// Interrupt_Status = 2(decimal) -> PS Interrupt
NewData_Status = Data & 0x05	// NewData_Status = 1(decimal) → PS New Data

PS Data Registers (Read Only)

// The PS Data Registers contain the ADC output data. // These registers should be read as a group, with the lower address being read first.

Slave_Addr = 0x23

// Read back PS_DATA registers Register_Addr = 0x91 ReadByte(Slave_Addr, Register_Addr, Data0)

Register_Addr = 0x92 ReadByte(Slave_Addr, Register_Addr, Data1)

PS_ADC_Data = (Data1 << 8) | Data0

Interrupt Registers

// The Interrupt register controls the operation of the interrupt pins and function. // The default value for this register is 0x08 (Interrupt inactive)

Slave_Addr = 0x23

// Set Interrupt Polarity for Active Low, PS trigger Register_Addr = 0x93

Command = 0x03

WriteByte(Slave_Addr, Register_Addr, Command)

// Slave address of LTR-706PS-01 device

// Combining lower and upper bytes to give 16-bit PS data

// Slave address of LTR-706PS-01 device

// Slave address of LTR-706PS-01 device

// PS_DATA low byte address

// PS_DATA high byte address

// Interrupt Register address // Interrupt is Active Low and PS can trigger

PS Threshold Registers

// The PS_THRES_UP and PS_THRES_LOW registers determines the upper and // lower limit of the interrupt threshold value. // Following example illustrates the setting of the PS dynamic threshold with hysteresis interruption for // decimal value 1000 (for NEAR detection) and 500 (for FAR detection)

Slave_Addr = 0x23

//For NEAR detection (decimal 1000)

PS_Upp_Threshold_Reg_0 = 0x95 PS_Upp_Threshold_Reg_1 = 0x96 Data1 = 1000 >> 8 Data0 = 1000 & 0xFF WriteByte(Slave_Addr, PS_Upp_Threshold_Reg_0, Data0) WriteByte(Slave_Addr, PS_Upp_Threshold_Reg_1, Data1)

PS_Low_Threshold_Reg_0 = 0x97 PS_Low_Threshold_Reg_1 = 0x98 // Slave address of LTR-706PS-01 device

- // PS Upper Threshold Low Byte Register address
- // PS Upper Threshold High Byte Register address
- // To convert decimal 1000 into two eight bytes register values

// PS Lower Threshold Low Byte Register address // PS Lower Threshold High Byte Register address

27/35

OPTICAL SENSOR LTR-706PS-01

// To convert decimal 0 into two eight bytes register values

// PS Upper Threshold Low Byte Register address

// PS Upper Threshold High Byte Register address

// PS Lower Threshold Low Byte Register address

// PS Lower Threshold High Byte Register address

// To convert decimal 2047 into two eight bytes register values

// To convert decimal 500 into two eight bytes register values

Data1 = 0 >> 8 Data0 = 0 & 0xFF WriteByte(Slave_Addr, PS_Low_Threshold_Reg_0, Data0) WriteByte(Slave_Addr, PS_Low_Threshold_Reg_1, Data1)

//For FAR detection (decimal 500)

PS_Upp_Threshold_Reg_0 = 0x95 PS_Upp_Threshold_Reg_1 = 0x96 Data1 = 2047 >> 8 Data0 = 2047 & 0xFF WriteByte(Slave_Addr, PS_Upp_Threshold_Reg_0, Data0) WriteByte(Slave_Addr, PS_Upp_Threshold_Reg_1, Data1)

PS_Low_Threshold_Reg_0 = 0x97 PS_Low_Threshold_Reg_1 = 0x98 Data1 = 500 >> 8 Data0 = 500 & 0xFF WriteByte(Slave_Addr, PS_Low_Threshold_Reg_0, Data0) WriteByte(Slave_Addr, PS_Low_Threshold_Reg_1, Data1)

Fault Detection Control Register

// Upon power up and before PS is enable, it is recommended that the fault detection is activated. //This is done by the following instructions. Slave_Addr = 0x23 // Slave address of LTR-706PS-01 device Register Addr = 0x9F // Fault detection register Command = 0x80 // 0x80 for Force detection of Full (Level1&2) fault detection WriteByte(Slave_Addr, Register_Addr, Command) // 0x90 for Force detection of Level1 fault detection Command = 0x10// Activate the CLOCK to force a fault detection WriteByte(Slave_Addr, Register_Addr, Command) Register_Addr = 0x9F // Fault detection register ReadByte(Slave_Addr, Register_Addr, Data) Interrupt_Status = Data & 0x0F // Fault status = 8(decimal) -> ENB Gate stuck low // Fault status = 4(decimal) > ENB Gate stuck high // Fault status = 2(decimal) → ENB Fault // Fault status = 1(decimal) → VCSEL fault // De-Activate the CLOCK to stop the fault detection Command = 0x00WriteByte(Slave_Addr, Register_Addr, Command) // Setting the fault level of the fault detection. //This is done by the following instructions. Slave_Addr = 0x23 // Slave address of LTR-706PS-01 device Register_Addr = 0x65 // Enable write permission for register 0x9F

Command = 0x79 WriteByte(Slave_Addr, Register_Addr, Command)

Register Addr = 0x03 Command = 0x82 WriteByte(Slave_Addr, Register_Addr, Command)

Register Addr = 0x9F Command = 0x00 WriteByte(Slave_Addr, Register_Addr, Command)

Register_Addr = 0x83Command = 0x08 // Enable write permission for register 0x9F

// Enable write permission for register 0x9F
// Enable write permission for register 0x9F

// Fault detection register

- // 0x00 for Force detection of Full (Level1&2) fault detection
- // 0x10 for Force detection of Level1 fault detection

// PS_LED Register for Number of pulses
// Number of pulses = 8

Register_Addr = 0x9F

Interrupt_Status = Data & 0x0F

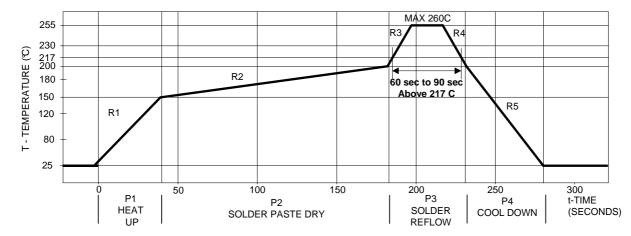
Data Sheet

OPTICAL SENSOR LTR-706PS-01

Register_Addr = 0x81 Command = 0x02 WriteByte(Slave_Addr, Register_Addr, Command)

ReadByte(Slave_Addr, Register_Addr, Data)

// PS_CONTR register // PS ON


// Fault detection register

// Fault status = 8(decimal) → ENB Gate stuck low
// Fault status = 4(decimal) → ENB Gate stuck high
// Fault status = 2(decimal) → ENB Fault
// Fault status = 1(decimal) → VCSEL fault

OPTICAL SENSOR LTR-706PS-01

8 Recommended Lead-free Reflow Profile

Process Zone	Symbol	ΔΤ	Maximum ∆T/∆time or Duration	
Heat Up	P1, R1	25°C to 150°C	3°C/s	
Solder Paste Dry	P2, R2	150°C to 200°C	100s to 180s	
Solder Reflow	P3, R3	200°C to 260°C	3°C/s	
Solder Reliow	P3, R4	260°C to 200°C	-6°C/s	
Cool Down	P4, R5	200°C to 25°C	-6°C/s	
Time maintained above liq	uidus point , 217°C	> 217°C	60s to 90s	
Peak Temperature	Peak Temperature		-	
Time within 5°C of actual F	Peak Temperature	> 255°C	20s	
Time 25°C to Peak Tempe	erature	25°C to 260°C	8mins	

It is recommended to perform reflow soldering no more than three times without rework.

For manual soldering, the soldering iron tip shall not touch the package plastic body, The soldering iron shall only in contact to the circuit board pad and the heat should be conducted to the tin wire and component lead. The temperature of the solder iron can be set as high as 300 degree but the temperature on the tip of the tool shall be 270 to 275°C. Soldering process shall take a few seconds for each pin/pad. The package maximum temperature shall be kept less than 270°C and all mechanical stresses in the pin should be minimized. It should be noted that the thermoplastic shield material (PA9T) attached on top of the component has a thermal deflection temperature of around 280 degree and will be damaged if excessive heat above this temperature is used.

30/3

OPTICAL SENSOR LTR-706PS-01

9 Moisture Proof Packaging

All LTR-706PS-01 are shipped in moisture proof package. Once opened, moisture absorption begins. This part is compliant to JEDEC J-STD-033A Level 3.

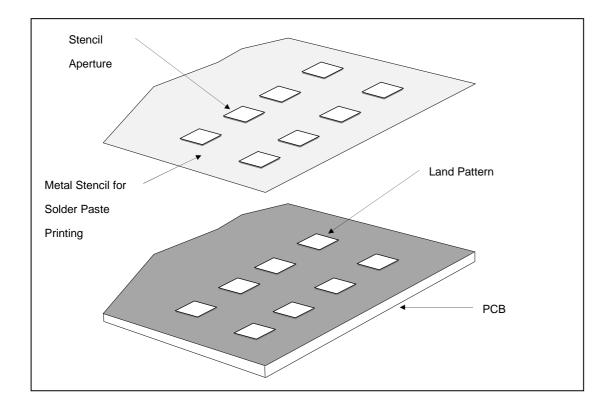
Time from Unsealing to Soldering

After removal from the moisture barrier bag, the parts should be stored at the recommended storage conditions and soldered within seven days. When the moisture barrier bag is opened and the parts are exposed to the recommended storage conditions for more than seven days, the parts must be baked before reflow to prevent damage to the parts.

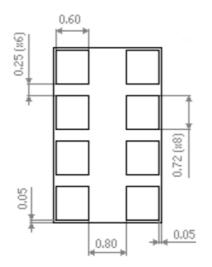
Recommended Storage Conditions

Storage Temperature	10°C to 30°C
Relative Humidity	Below 60% RH

Baking Conditions


Package	Temperature	Time
In Reels	60°C	48 hours
In Bulk	100°C	4 hours

Baking should only be done once.



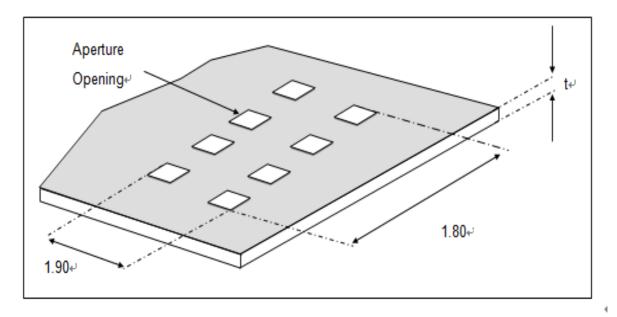
OPTICAL SENSOR LTR-706PS-01

10 Recommended Land Pattern and Metal Stencil Aperture

10.5 Recommended Land Pattern

Note: All dimensions are in millimeters.

32/35

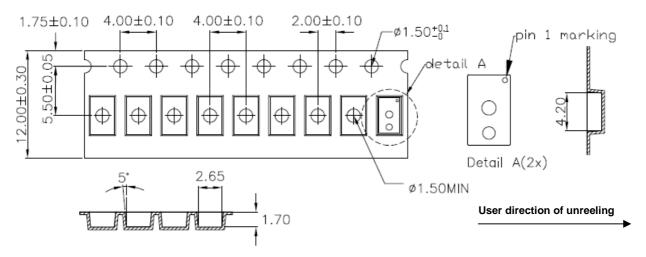


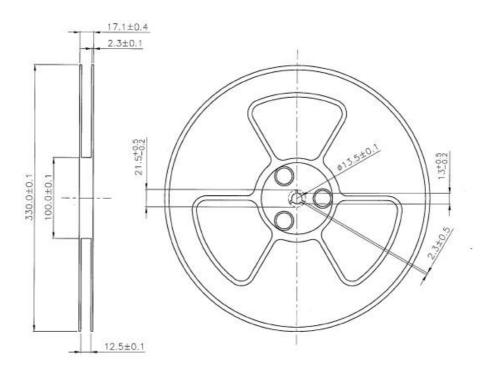
OPTICAL SENSOR LTR-706PS-01

2. Recommended Metal Stencil Aperture

It is recommended that the metal stencil used for solder paste printing has a thickness (t) of 0.11mm (0.004 inches / 4 mils) or 0.127mm (0.005 inches / 5 mils).

The stencil aperture opening is recommended to be 0.30mm x 0.35mm which has the same dimension as the land pattern. This is to ensure adequate printed solder paste volume and yet no shorting.


Note: All dimensions are in millimeters.


OPTICAL SENSOR LTR-706PS-01

11 Package Dimension for Tape and Reel

Note:

1. All dimensions are in millimeters

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Empty component pockets sealed with top cover tape.
- 3. 13 inch reel 8000 pieces per reel.
- 4. In accordance with ANSI/EIA 481-1-A-1994 specifications.

12 Revision Table

Versio	Update	Page	Date
1.0	Final Datasheet as created	Total 35	06-Sep-16

