

Structure Silicon Monolithic Integrated Circuit

Product Series 4ch PWM Sensorless System Motor Driver for MD

Type BD6643KN

Features • Operates at low power supply voltage (2.1V min.)

• Power DMOS output with low ON resistance (0.8Ω typ.)

· Incorporates a charge pump circuit for VG boost

• 3-phase full-wave PWM soft switching sensorless driver for spindle

- 3-value control 3-phase driver for sled (Built-in comparator for BEMF voltage detection)

· 2ch, 3-value control H-bridges for focus/tracking

OAbsolute maximum ratings (Ta=25°C)

Parameter	Symbol	Limit	Unit
Power supply voltage for control circuit	VCC	7	V
Power supply voltage for driver block	VM	7	V
Power supply voltage for pre-driver block	VG	14	V
Input voltage	VIN	0~VCC	V
Output current	Iomax	*500	mA
Power dissipation	Pd	**760	mW
Operating temperature range	Topr	<i>-</i> 25∼+75	$^{\circ}\!\mathbb{C}$
Storage temperature range	Tstg	-55∼+150	$^{\circ}\!\mathbb{C}$
Junction temperature	Tjmax	+150	$^{\circ}\!\mathbb{C}$

^{*}Must not exceed Pd or ASO, Tjmax=150°C.

OOperating conditions (Ta=-25~+75°C)

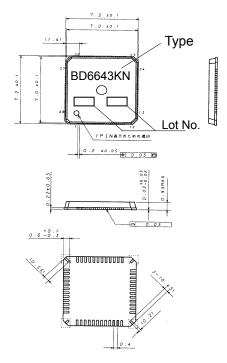
Parameter	Symbol	Min.	Тур.	Max.	Unit
	VCC	2.1	2.2	6.5	V
Power supply voltage	VM	_	_	3.0	٧
	VG	3	6.5	13	٧

This product described in this specification is not judged whether it applies to COCOM regulations.

Please confirm in case of export.

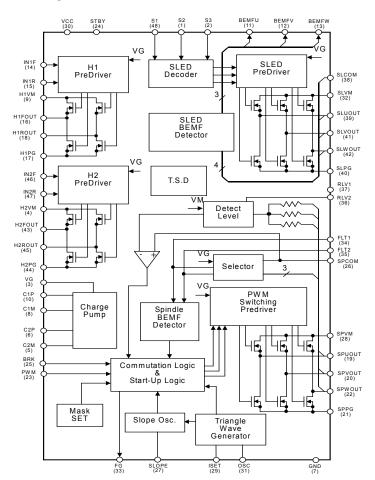
This product is not designed for protection against radioactive rays.

^{* *} Reduced by 6.1mW/°C over Ta=25°C, when mounted on a glass epoxy board (70mm×70mm×1.6mm).


O Electrical characteristics (Unless otherwise specified, Ta=25°C, VCC=2.2V, VM=1.0V, fin=176kHz)

Parameter	Symbol	Limit		Unit	Conditions	
	,	Min.	Тур.	Max.	Onic	Conditions
\sim Spindle (3-phase full-wave sensorless drive	er)~			1		
Position detection comparator offset	VSOFS	-10	-	10	mV	
Position detection comparator input range	VSD	0	-	VCC-1.0	V	
Position detection comparatorinput current H	ISH	-	-	2	μΑ	input=VCC
Position detection comparatorinput current L	ISL	-2	-	-	μΑ	input=0V
SLOPE charge current	ISLO	-12.8	-9.8	-6.8	μΑ	
SLOPE discharge current	ISLI	6.5	9.4	12.5	μΑ	
SLOPE clamp H level	VSLH	0.5	0.8	1.1	V	
SLOPE clamp L level	VSLL	0.3	0.46	0.6	V	
OSC oscillating frequency	fOSC	70	100	130	kHz	OSC=200pF ISET=50kΩ
OSC charge current	IOSCO	-12.5	-9.65	-6.5	μΑ	
OSC discharge current	IOSCI	6.5	9.56	12.5	μΑ	
OSC H level	VOSCH	0.5	0.75	1.0	V	
OSC L level	VOSCL	0.35	0.53	0.70	V	
ISET voltage	VSET	350	505	650	mV	ISET=50kΩ
PWM input frequency	fPWM	60	132	200	kHz	
PWM H level input voltage	VPWH	VCC-0.4	-	VCC	V	
PWM L level input voltage	VPWL	0	-	0.4	V	
PWM H level input current	IPWH	-	-	1	μA	PWM=VCC
PWM L level input current	IPWL	-1	-	-	μA	PWM=0V
·		VCC-0.4	-	VCC	V	Brake ON(BD6641KUT)
BLAKE H level input voltage	VBKH					Brake OFF(BD6643KN)
) (D)(()	0		0.4	V	Brake OFF(BD6641KUT)
BLAKE L level input voltage	VBKL		-	0.4		Brake ON(BD6643KN)
BLAKE H level input current	IBKH	-	-	1	μA	BRAKE=VCC
BLAKE L level input current	IBKL	-1	-	-	μA	BRAKE=0V
FG H level output voltage	VFGH	VCC-0.4	-	VCC	V	Io=-500μA
FG L level output voltage	VFGL	0	-	0.4	V	Io=500μA
∼Sled, focus, tracking (stepping, H-bridge × 2	2ch) \sim					'
H level input voltage	VINH	VCC-0.4	-	VCC	V	
L level input voltage	VINL	0	-	0.4	V	
H level input current	IINH	-	-	1	μA	VIN=VCC
L level input current	IINL	-1	-	_	μA	VIN=0V
•	TRISE	_	0.2	1	μs	
I/O propagation delay time (H-bridge)	TFALL	-	0.1	0.7	μs	
Short pulse input response (H-bridge)	tmin	120	-	-	ns	Input pulse width 200 ns
\sim Sled, position detection comparator \sim		0				pat paiceaa. 200 iio
Position detection comparator offset	VAOFS	-10	_	10	mV	
Position detection comparator input range	VAD	0	_	VCC-1.0	V	
Position detection comparator input current H	IAH	_	<u> </u>	2	μA	
Position detection comparator input current L	IAL	-2	_	-	μΑ	
Position detection comparator input current L Position detection comparator output voltage L	VAOL	-2	0.2	0.3	V	Io=300µA
1 1		10				10-300μΑ
Position detection comparator output pull-up resistance	ROA	10	20	30	kΩ	

 $[\]odot$ This product is not designed for protection against radioactive rays.



$\bigcirc \mathsf{Package} \ \mathsf{outlines}$

UQFN48 outlines (Unit: mm)

OBlock diagram

OPin No./Pin name

		1	
NO.	Pin name	NO.	Pin name
1	S2	33	BRK
2	S3	34	SPCOM
3	VG	35	SLOPE
4	N.C	36	N.C
5	H2VM	37	SPVM
6	N.C	38	MSK
7	C2M	39	ISET
8	C2P	40	VCC
9	GND	41	N.C
10	C1M	42	OSC
11	N.C	43	N.C
12	H1VM	44	SLVM
13	N.C	45	FG
14	C1P	46	FLT1
15	BEMFU	47	FLT2
16	BEMFV	48	RLV2
17	BEMFW	49	SGND
18	IN1F	50	RLV1
19	IN1R	51	SLCOM
20	H1FOUT	52	SLUOUT
21	H1PG	53	SLPG
22	H1ROUT	54	SLVOUT
23	N.C	55	N.C
24	N.C	56	SLWOUT
25	SPUOUT	57	N.C
26	N.C	58	N.C
27	SPVOUT	59	H2FOUT
28	SPPG	60	H2PG
29	SPWOUT	61	H2ROUT
30	N.C	62	IN2F
31	PWM	63	IN2R
32	STBY	64	S1

ONotes on the use

(1) Absolute maximum ratings

If the input voltage or the operating temperature range exceeds absolute maximum ratings, IC may be damaged. No destruction mode (e.g., short-circuiting or open) can be specified in that case. If such special mode as will exceed absolute maximum ratings is assumed, take the physical safety measures, such as a fuse.

(2) Power supply lines

The regenerated current by BEMF of the motor will return. Therefore, take measures, such as the insertion of a capacitor between the power supply and GND as the pass of the regenerated current. Determine the capacitance in full consideration of all the characteristics of the electrolytic capacitor, because the electrolytic capacitor may loose some capacitance at low temperatures.

(3) Ground potential

Ensure a minimum GND pin potential in all operating conditions.

(4) Design for heat

Use the design for heat that allows for a sufficient margin in light of the power dissipation (Pd) in actual using conditions.

(5) Operation in strong magnetic field

Use caution when using the IC in the strong magnetic field as doing so may cause the IC to malfunction.

(6) ASO

When using the IC, make settings so that the output transistors for the motor will not be used under conditions in excess of the absolute maximum ratings and ASO.

(7) Thermal shutdown circuit

This IC incorporates thermal shutdown circuit(TSD circuit).

When the chip temperature becomes the one shown in below, TSD circuit operates and makes the coil output to motor open. It is designed to shut the IC off from runaway thermal operation. It is not designed to protect the IC or guarantee its operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is assumed.

TSD ON temperature[°C] (typ.)	Hysteresis temperature [°C] (typ.)
175	20

(8) Ground wiring pattern

When having both small signal and large current GND, it is recommended to isolate the two GND patterns, placing a single ground point at the application's reference point so that the pattern wiring resistance and voltage variations caused by large currents do not cause voltage variations of the small signal GND. Be careful not to change the GND wiring pattern of any external parts, either.

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/