INTERNATIONAL MICROCIRCUITS IN #### PRODUCT FEATURES - >40 MHz typical operating frequency - 7 ns typical pulse width - TTL level compatibility - Linear digital phase detection - Two error output options: Single-ended or Double-ended - Lock detect signal - Suitable for systems requiring ZERO phase-frequency difference at lock - Low power consumption - Packaging options include: - Plastic and Ceramic Dual-in-line - SOIC - Die for hydrid applications - Grades available include: commercial, military operating range, and military screening ## PRODUCT DESCRIPTION The IMI4345 is one of the family of LSI PLL frequency synthesizers offered by International Microcircuits. The device is a very fast CMOS digital phase detector, it compares phases of two input frequencies and output error signals which are linearly proportional to the phase difference. When used with prescalers, a loop filter and a VCO, the IMI4345 provides a very broad bandwidth frequency synthesizer. #### **APPLICATIONS** The phase detector can be used in general applications which require high performance phase detection such as: CATV, AM/FM Radio, TV Tuning and Scanning Receivers. With its exceptional bandwidth it can also be used in Radar and Video applications. # PIN ASSIGNMENT ### BLOCK DIAGRAM ## **MAXIMUM RATINGS** - DC Supply Voltage $V_{DD} = -0.5 \text{ to } +10 \text{V}$ - Input Voltage $V_{IN} = -0.5$ to $V_{DD} + 0.5V$ - Input Current per pin I_{IN} = ±10 mA - Storage Temperature T_{STG} = -65 to 150 °C Maximum ratings are conditions beyond which damage to the device may occur (voltage referenced to V_{SS}). This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltages to this circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range: $$V_{SS} < (V_{IN} \text{ or } V_{OUT}) < V_{DD}$$ Unused inputs must always be tied to an appropriate logic level (either V_{SS} or V_{DD}). # **BONDING DIAGRAM** # SWITCHING CHARACTERISTICS $T_A = -55 \text{ to } + 125 \text{ °C}$ $V_{DD} = 4.5 \text{ to } 5.5 \text{V}$ $C_L = 50 \text{pF}$ | Characteristics | Symbol | Min. | Тур. | Max. | Units | |--|---------------------------------|------|------|------|-------| | Output Rise and Fall Time | t _R , t _F | | 10 | 20 | nS | | Output Pulse Width PHIR, PHIV with f _R in phase with f _V | t _{WO} | 0 | 15 | 25 | nS | | Positive Clock Pulse Width | t _{WP} | 25 | 15 | | nS | | Negative Clock
Pulse Width | twn | 25 | 15 | | nS | | Maximum Frequency | f _{MAX} | | 30 | 15 | MHz | | Characteristics | Symbol | −55 to 125°C
4.5 to 5.5V | | −40 to 85°C
4.75 to 5.25V | | 25°C
5V | Units | |--|--------------------|-----------------------------|------|------------------------------|------|------------|-----------------| | | ., | Min. | Max. | Min. | Max. | Тур. | | | Input Voltage | V _{IL} | 1. 1. 1. 1. | 0.8 | | 0.8 | 1.2 | V _{dc} | | $V_0 = 0.4 \text{ or } 2.4V$ | V _{IH} | 2.2 | | 2.0 | | 1.6 | | | Output Current PHIR and PHIV only V _{OH} 2.4V | Юн | 6.0 | | 7 | | 8 | | | V _{OL} 0.4V | I _{OL} | 6.0 | | 7 | | 8 | mA | | PD _{OUT} and LD only V _{OH} 2.4V | Юн | 3.0 | | 3.5 | | 4 | | | V _{OL} 0.4V | loL | 3.0 | | 3.5 | | 4 | | | Input Current | I _{IN} | 1.3.1 | ±10 | | ±10 | ±0.1 | μA | | Input Capacitance | CIN | | 10 | | 10 | 6 | рF | | Output Capacitance | C _{OUT} | | 10 | | 10 | 6 | рF | | 3-State Leakage | 1_ | | 1.10 | | : 3 | ± 0.1 | μΑ | | Quiescent Current | IDD _{st} | | 10 | | 10 | . 1 | μΑ | | Dynamic Current at 20 MHz | IDD _{dyn} | | 50 | | 50 | 30 | mΑ | ### PHASE DETECTOR OUTPUT WAVEFORMS NOTE: The PD_{OUT} state is equal to either V_{DD} or V_{SS} when active. When not active, the output is high impedance and the voltage at that pin is determined by the low pass filter capacitor. ### PHASE LOCKED LOOP – LOW PASS FILTER DESIGN Continued on page 4 ## PHASE LOCKED LOOP - LOW PASS FILTER DESIGN Continued from page 3 $$F(S) = \frac{1}{R_1CS+1} \qquad F(S) = \frac{R_2CS+1}{S(R_1C+R_2C)+1} \qquad \begin{array}{c} \text{Assuming gain A is very} \\ \text{large, then:} \end{array}$$ $$F(S) = \frac{R_2CS + 1}{2}$$ NOTE: Sometimes R_1 is split into two series resistors each $R_1 \div 2$. A capacitor Cc is then placed from the midpoint to ground to further ϕV and ϕR . The value of Cc should be such that the corner frequency of this network does not significantly affect ω_N . DEFINITIONS: N = Total Division Ratio in feedback loop $$\begin{split} \mathsf{K}\phi &= \mathsf{V}_{\mathsf{DD}}/4\pi \text{ for PD}_{\mathsf{OUT}} \\ \mathsf{K}\phi &= \mathsf{V}_{\mathsf{DD}}/2\pi \text{ for } \phi \mathsf{V} \text{ and } \phi \mathsf{R} \\ \mathsf{K}_{\mathsf{VCO}} &= \frac{2\pi \Delta \mathsf{f}_{\mathsf{VCO}}}{\Delta \mathsf{V}_{\mathsf{VCO}}} \end{split}$$ for a typical design $\omega_{N}\cong (2\pi/10)f_{r}$ (at phase detector input) $\xi\cong 1$ #### ORDERING INFORMATION Products are available from International Microcircuits in several packages and screening options. The Order Number is formed by a combination of device number, package pins, package style, and screening, as shown below.