

INTERNATIONAL MICROCIRCUITS IN

PRODUCT FEATURES

- >40 MHz typical operating frequency
- 7 ns typical pulse width
- TTL level compatibility
- Linear digital phase detection
- Two error output options: Single-ended or Double-ended
- Lock detect signal
- Suitable for systems requiring ZERO phase-frequency difference at lock
- Low power consumption
- Packaging options include:
 - Plastic and Ceramic Dual-in-line
 - SOIC
 - Die for hydrid applications
- Grades available include: commercial, military operating range, and military screening

PRODUCT DESCRIPTION

The IMI4345 is one of the family of LSI PLL frequency synthesizers offered by International Microcircuits. The device is a very fast CMOS digital phase detector, it compares phases of two input frequencies and output error signals which are linearly proportional to the phase difference. When used with prescalers, a loop filter and a VCO, the IMI4345 provides a very broad bandwidth frequency synthesizer.

APPLICATIONS

The phase detector can be used in general applications which require high performance phase detection such as: CATV, AM/FM Radio, TV Tuning and Scanning Receivers.

With its exceptional bandwidth it can also be used in Radar and Video applications.

PIN ASSIGNMENT

BLOCK DIAGRAM

MAXIMUM RATINGS

- DC Supply Voltage $V_{DD} = -0.5 \text{ to } +10 \text{V}$
- Input Voltage $V_{IN} = -0.5$ to $V_{DD} + 0.5V$
- Input Current per pin I_{IN} = ±10 mA
- Storage Temperature T_{STG} = -65 to 150 °C

Maximum ratings are conditions beyond which damage to the device may occur (voltage referenced to V_{SS}).

This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltages to this circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range:

$$V_{SS} < (V_{IN} \text{ or } V_{OUT}) < V_{DD}$$

Unused inputs must always be tied to an appropriate logic level (either V_{SS} or V_{DD}).

BONDING DIAGRAM

SWITCHING CHARACTERISTICS

 $T_A = -55 \text{ to } + 125 \text{ °C}$ $V_{DD} = 4.5 \text{ to } 5.5 \text{V}$ $C_L = 50 \text{pF}$

Characteristics	Symbol	Min.	Тур.	Max.	Units
Output Rise and Fall Time	t _R , t _F		10	20	nS
Output Pulse Width PHIR, PHIV with f _R in phase with f _V	t _{WO}	0	15	25	nS
Positive Clock Pulse Width	t _{WP}	25	15		nS
Negative Clock Pulse Width	twn	25	15		nS
Maximum Frequency	f _{MAX}		30	15	MHz

Characteristics	Symbol	−55 to 125°C 4.5 to 5.5V		−40 to 85°C 4.75 to 5.25V		25°C 5V	Units
	.,	Min.	Max.	Min.	Max.	Тур.	
Input Voltage	V _{IL}	1. 1. 1. 1.	0.8		0.8	1.2	V _{dc}
$V_0 = 0.4 \text{ or } 2.4V$	V _{IH}	2.2		2.0		1.6	
Output Current PHIR and PHIV only V _{OH} 2.4V	Юн	6.0		7		8	
V _{OL} 0.4V	I _{OL}	6.0		7		8	mA
PD _{OUT} and LD only V _{OH} 2.4V	Юн	3.0		3.5		4	
V _{OL} 0.4V	loL	3.0		3.5		4	
Input Current	I _{IN}	1.3.1	±10		±10	±0.1	μA
Input Capacitance	CIN		10		10	6	рF
Output Capacitance	C _{OUT}		10		10	6	рF
3-State Leakage	1_		1.10		: 3	± 0.1	μΑ
Quiescent Current	IDD _{st}		10		10	. 1	μΑ
Dynamic Current at 20 MHz	IDD _{dyn}		50		50	30	mΑ

PHASE DETECTOR OUTPUT WAVEFORMS

NOTE: The PD_{OUT} state is equal to either V_{DD} or V_{SS} when active. When not active, the output is high impedance and the voltage at that pin is determined by the low pass filter capacitor.

PHASE LOCKED LOOP – LOW PASS FILTER DESIGN

Continued on page 4

PHASE LOCKED LOOP - LOW PASS FILTER DESIGN

Continued from page 3

$$F(S) = \frac{1}{R_1CS+1} \qquad F(S) = \frac{R_2CS+1}{S(R_1C+R_2C)+1} \qquad \begin{array}{c} \text{Assuming gain A is very} \\ \text{large, then:} \end{array}$$

$$F(S) = \frac{R_2CS + 1}{2}$$

NOTE: Sometimes R_1 is split into two series resistors each $R_1 \div 2$. A capacitor Cc is then placed from the midpoint to ground to further ϕV and ϕR . The value of Cc should be such that the corner frequency of this network does not significantly affect ω_N .

DEFINITIONS: N = Total Division Ratio in feedback loop
$$\begin{split} \mathsf{K}\phi &= \mathsf{V}_{\mathsf{DD}}/4\pi \text{ for PD}_{\mathsf{OUT}} \\ \mathsf{K}\phi &= \mathsf{V}_{\mathsf{DD}}/2\pi \text{ for } \phi \mathsf{V} \text{ and } \phi \mathsf{R} \\ \mathsf{K}_{\mathsf{VCO}} &= \frac{2\pi \Delta \mathsf{f}_{\mathsf{VCO}}}{\Delta \mathsf{V}_{\mathsf{VCO}}} \end{split}$$

for a typical design $\omega_{N}\cong (2\pi/10)f_{r}$ (at phase detector input) $\xi\cong 1$

ORDERING INFORMATION

Products are available from International Microcircuits in several packages and screening options. The Order Number is formed by a combination of device number, package pins, package style, and screening, as shown below.

