Silicon Economy

Bilateral Switch

(SBS)

The General Electric SBS is a silicon planar, monolithic integrated circuit having the electrical characteristics of a bilateral thyristor. The device is designed to switch at 8 volts with a 0.02%/°C temperature coefficient and excellently matched characteristics in both directions. A gate lead is provided to eliminate rate effect and to obtain triggering at lower voltages.

The Silicon Bilateral Switches are specifically designed and characterized for applications where stability of switching voltage over a wide temperature range and well matched bilateral characteristics are an asset. They are ideally suited for half wave and full wave triggering in low voltage SCR and Triac phase control circuits.

absplute maximum ratings: (25°C free air) (unless otherwise specified)

Storage Temperature Range	-65 to +150	•c
Operating Junction Temperature Range	-55 to +125	•C
Power Dissipation*	300	•
DC Forward Anode Current		mW
DC Gate Cucrent *†	175	mA
Peak Recurrent Forward Current (1% duty cycle, 10 usec nulse	5	mA
width, T _* = 100°C)	1.0	Amp
Peak Non-Recurrent Forward Current (10 μsec pulse width, T _A = 25°C) *Derate linearly to zero at 125°C.	5.0	Amps

†This rating applicable only on OFF state. Maximum gate current in conducting state limited by maximum power rating.

EQUIVALENT CIRCUIT

TO-18

CIRCUIT SYMBOL

electrical characteristics:** (25°C, unless otherwise specified)

		2N499	1 /				ì			
	2N4991		2N4992		2N4993					
37	MIN.	TYP.		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
	6			7.5		9.0	6		10	V
			1			120			500	μA
,			1			.2			.5	V
						10			100	μ A
11(1.5			.5	1		1.5	mA
I _B			1.0			0.1			0.1	μA
		•	10.0			10.0	ł		10.0	μ A
T_{c}		± .02			± .05		1	± .02	. •	%/°(
\mathbf{v}_r			1.70	l		1 70	1			
l _{GF}			_						1.70	. V
				l			ļ			μ.Α
ton			1.0			1.0			1.0	iisec
V. t _{off}	3.5		30 O	3.5			3.5			μsec V μsec
	Is Tc Vr IGF ton Vo	$ I_{s} \\ V_{s}, \dots V_{s_{1}} $ $ I_{s}, \dots I_{s_{1}} $ $ I_{n} \\ I_{n} \\ I_{n} $ $ T_{c} $ $ V_{r} $ $ I_{GF} $ $ t_{on} $ $ V_{o} $ $ 3.5 $	Is Vs Vs. Is Is. Is Is. I.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Is 500 V _{s2} V _{s1} .5 I _{s2} I _{s1} 100 I ₁₆ 1.5 I _B 1.0 I _C 2.02 V _r 1.70 I _{GF} t _{on} V _e 3.5 t _{off} 3.5 1.0 3.5	Is 500 Vs: - Vs: .5 Is: - Is: 100 In 1.0 In 1.0 To ±.02 Vr 1.70 I _{GF} ton Vo tott	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

limits shown apply in either direction of current flow.