100329 # Low Power Octal ECL/TTL Bidirectional Translator with Register #### **General Description** The 100329 is an octal registered bidirectional translator designed to convert TTL logic levels to 100K ECL logic levels and vice versa. The direction of the translation is determined by the DIR input. A LOW on the output enable input (OE) holds the ECL outputs in a cut-off state and the TTL outputs at a high impedance level. The outputs change synchronously with the rising edge of the clock input (CP) even though only one output is enabled at the time. The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0V, presenting a high impedance to the data bus. This high impedance reduces the termination power and prevents loss of low state noise margin when several loads share the bus. The 100329 is designed with FAST® TTL output buffers, featuring optimal DC drive and capable of quickly charging and discharging highly capacitive loads. All inputs have $50 \text{ k}\Omega$ pull-down resistors. #### **Features** - Bidirectional translation - ECL high impedance outputs - Registered outputs - FAST TTL outputs - TRI-STATE® outputs - Voltage compensated operating range = -4.2V to -5.7V - Standard Microcircuit Drawing (SMD) 5962-9206601 #### **Connection Diagrams** #### 24-Pin Quad Cerpack TRI-STATE® is a registered trademark of National Semiconductor Corporation. FAST® is a registered trademark of Fairchild Semiconductor. ## Logic Symbol ### **Pin Descriptions** | Pin Names | Description | |--------------------------------|-------------------------| | E ₀ -E ₇ | ECL Data I/O | | T ₀ -T ₇ | TTL Data I/O | | OE | Output Enable Input | | CP | Clock Pulse Input | | | (Active Rising Edge) | | DIR | Direction Control Input | All pins function at 100K ECL levels except for T_0 – T_7 . ## **Functional Diagram** Note: DIR and OE use ECL logic levels #### **Detail** | OE | DIR | СР | ECL | TTL | Notes | |----|-----|----|-----------|-------|-------| | | | | Port | Port | | | L | L | Х | Input | Z | 1, 3 | | L | Н | Х | LOW | Input | 2, 3 | | | | | (Cut-Off) | | | | Н | L | ~ | L | L | 1 | | Н | L | ~ | Н | Н | 1 | | Н | L | L | X | NC | 1, 3 | | Н | Н | ~ | L | L | 2 | | Н | Н | ~ | Н | Н | 2 | | Н | Н | L | NC | Х | 2, 3 | H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care Z = High Impedance ✓ = LOW-to-HIGH Clock Transition NC = No Change Note 1: ECL input to TTL output mode. Note 2: TTL input to ECL output mode. Note 3: Retains data present before CP. #### **Absolute Maximum Ratings** (Note 4) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Storage Temperature (T_{STG}) $-65^{\circ}C$ to +150 $^{\circ}C$ Maximum Junction Temperature (T_i) Ceramic +175°C V_{EE} Pin Potential to Ground Pin -7.0V to +0.5V V_{TTL} Pin Potential to Ground Pin -0.5V to +6.0V ECL Input Voltage (DC) V_{EE} to +0.5V ECL Output Current (DC Output HIGH) –50 mA TTL Input Voltage (Note 6) -0.5V to +6.0V TTL Input Current (Note 6) -30 mA to +5.0 mA Voltage Applied to Output in HIGH State TRI-STATE Output -0.5V to +5.5V Current Applied to TTL Output in LOW State (Max) Twice the Rated I_{OL} (mA) ESD (Note 5) \geq 2000V # Recommended Operating Conditions Case Temperature (T_C) Military -55°C to $+125^{\circ}\text{C}$ ECL Supply Voltage (V_{EE}) -5.7V to -4.2V TTL Supply Voltage (V_{TTL}) +4.5V to +5.5V **Note 4:** Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied. Note 5: ESD testing conforms to MIL-STD-883, Method 3015. Note 6: Either voltage limit or current limit is sufficient to protect inputs. # Military Version TTL-to-ECL DC Electrical Characteristics V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = -55°C to +125°C, V_{TTL} = +4.5V to +5.5V | Symbol | Parameter | rameter Min Max Units T _C Con- | | Condi | tions | Notes | | | |------------------|--------------------------------|---|-------|-------|----------|--|---------------|--------------| | V _{OH} | Output HIGH Voltage | -1025 | -870 | mV | 0°C to | | Loading with | (Notes 7, 8, | | | | | | | +125°C | | 50Ω to -2.0V | 9) | | | | -1085 | -870 | mV | −55°C | $V_{IN} = V_{IH} (Max)$ | | | | V _{OL} | Output LOW Voltage | -1830 | -1620 | mV | 0°C to | or V _{IL} (Min) | | | | | | | | | +125°C | | | | | | | -1830 | -1555 | mV | −55°C | | | | | | Cutoff Voltage | | -1950 | mV | 0°C to | | | | | | | | | | +125°C | OE or DIR Low | | | | | | | -1850 | mV | −55°C | | | | | V _{OHC} | Output HIGH Voltage | -1035 | | mV | 0°C to | | | (Notes 7, 8, | | | | | | | +125°C | | | 9) | | | | -1085 | | mV | −55°C | $V_{IN} = V_{IH} (Min)$ | Loading with | | | V _{OLC} | Output LOW Voltage | | -1610 | mV | 0°C to | or V _{IL} (Max) | 50Ω0 to -2.0V | | | | | | | | +125°C | | | | | | | | -1555 | mV | −55°C | | | | | V _{IH} | Input HIGH Voltage | 2.0 | | V | −55°C to | Over V _{TTL} , V _{EE} , T _C Range | | (Notes 7, 8, | | | | | | | +125°C | | | 9, 10) | | V_{IL} | Input LOW Voltage | | 0.8 | V | −55°C to | Over V _{TTL} , V _{EE} , T _C Range | | (Notes 7, 8, | | | | | | | +125°C | | | 9, 10) | | I _{IH} | Input HIGH Current | | 70 | μA | −55°C to | $V_{IN} = +2.7V$ | | (Notes 7, 8, | | | | | | | 125°C | | | 9) | | | Breakdown Test | | 1.0 | mA | −55°C to | $V_{IN} = +5.5V$ | | | | | | | | | +125°C | | | | | I _{IL} | Input LOW Current | -1.0 | | mA | −55°C to | $V_{IN} = +0.5V$ | | (Notes 7, 8, | | | | | | | +125°C | | | 9) | | V _{FCD} | Input Clamp | -1.2 | | V | −55°C to | $I_{IN} = -18 \text{ mA}$ | | (Notes 7, 8, | | | Diode Voltage | | | | +125° C | | | 9) | | I _{EE} | V _{EE} Supply Current | | | | −55°C to | OE and DIR High | | (Notes 7, 8, | | | | | | | | Inputs Open | | 9) | | | | -206 | -70 | mA | +125°C | $V_{EE} = -4.2V \text{ to } -5$ | | | # Military Version ECL-to-TTL DC Electrical Characteristics $V_{EE} = -4.2 V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_{C} = -55 ^{\circ}C$ to +125 $^{\circ}C$, $C_{L} = 50$ pF, $V_{TTL} = +4.5 V$ to + 5.5V | Symbol | Parameter | Min | Max | Units | T _C | Conditions | Notes | |-------------------|---------------------------------|-------|-------|-------|----------------|---|---------------------| | V _{OH} | Output HIGH Voltage | 2.5 | | mV | 0°C to +125°C | $I_{OH} = -1 \text{ mA}, V_{TTL} = 4.50V$ | (Notes 7, 8, 9) | | | | 2.4 | | | −55°C | | | | V _{OL} | Output LOW Voltage | | 0.5 | mV | −55°C | $I_{OL} = 24 \text{ mA}, V_{TTL} = 4.50 \text{V}$ | | | | | | | | +125°C | | | | V _{IH} | Input HIGH Voltage | -1165 | -870 | mV | −55°C | Guaranteed HIGH Signal | (Notes 7, 8, 9, 10) | | | | | | | +125°C | for All Inputs | | | V _{IL} | Input LOW Voltage | -1830 | -1475 | mV | −55°C to | Guaranteed LOW Signal | (Notes 7, 8, 9, 10) | | | | | | | +125°C | for All Inputs | | | I _{IH} | Input HIGH Current | | 350 | μΑ | 0°C to | V _{EE} = -5.7V | (Notes 7, 8, 9) | | | | | 500 | | +125°C | $V_{IN} = V_{IH} (Max)$ | | | I _{IL} | Input LOW Current | 0.50 | | μA | −55°C to | V _{EE} = -4.2V | (Notes 7, 8, 9) | | | | | | | +125°C | $V_{IN} = V_{IL} (Min)$ | | | I _{OZHT} | TRI-STATE Current | | 70 | μΑ | −55°C to | V _{OUT} = +2.7V | (Notes 7, 8, 9) | | | Output High | | | | +125°C | | | | I _{OZLT} | TRI-STATE Current | -1.0 | | mA | −55°C to | $V_{OUT} = +0.5V$ | (Notes 7, 8, 9) | | | Output Low | | | | +125°C | | | | Ios | Output Short-Circuit | -60 | -150 | mA | −55°C to | $V_{OUT} = 0.0V, V_{TTL} = +5.5V$ | (Notes 7, 8, 9) | | | CURRENT | | | | +125°C | | | | I _{TTL} | V _{TTL} Supply Current | | 70 | mA | −55°C to | TTL Outputs Low | (Notes 7, 8, 9) | | | | | 47 | mA | +125°C | TTL Output High | | | | | | 70 | mA | | TTL Output in TRI-STATE | | **Note 7:** F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures. Note 8: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups, 1, 2 3, 7, and 8. Note 9: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8. Note 10: Guaranteed by applying specified input condition and testing V_{OH}/V_{OL} . #### Military Version TTL-to-ECL AC Electrical Characteristics V_{EE} = -4.2V to -5.7V, V_{TTL} = +4.5V to +5.5V, V_{CC} = V_{CCA} = GND | Symbol | Parameter | T _C = | $T_C = -55^{\circ}C$ | | T _C = 25°C | | T _C =
+125°C | | Conditions | Notes | |---------------------|------------------------|------------------|----------------------|-----|-----------------------|-----|----------------------------|-----|--------------|------------| | | | Min | Max | Min | Max | Min | Max | 1 | | | | t _{PLH} | CP to E _n | 1.3 | 3.8 | 1.6 | 3.7 | 1.9 | 4.3 | ns | Figures 1, 2 | (Notes 11, | | t _{PHL} | | | | | | | | ns | | 12, 13) | | t _{PZH} | OE to E _n | 1.0 | 4.3 | 1.5 | 4.4 | 1.7 | 9.0 | ns | Figures 1, 2 | (Notes 11, | | | (Cutoff to HIGH) | | | | | | | | | 12, 13) | | t _{PHZ} | OE to E _n | 1.5 | 5.0 | 1.6 | 4.5 | 1.6 | 5.0 | ns | Figures 1, 2 | | | | (HIGH to Cutoff) | | | | | | | | | | | t _{PHZ} | DIR to E _n | 1.6 | 4.7 | 1.6 | 4.3 | 1.7 | 4.7 | ns | Figures 1, 2 | | | | (HIGH to Cutoff) | | | | | | | | | | | t _{set} | T _n to CP | 2.5 | | 2.0 | | 2.5 | | ns | Figures 1, 2 | (Note 14) | | t _{hold} | T _n to CP | 2.5 | | 2.0 | | 2.5 | | ns | Figures 1, 2 | | | t _{pw} (H) | Pulse Width CP | 2.5 | | 2.0 | | 2.5 | | ns | Figures 1, 2 | (Note 14) | | t _{TLH} | Transition Time | 0.4 | 2.3 | 0.5 | 2.1 | 0.4 | 2.4 | ns | Figures 1, 2 | (Note 14) | | t _{THL} | 20% to 80%, 80% to 20% | | | | | | | | | | | f _{MAX} | СР | 250 | | 250 | | 250 | | MHz | | | # Military Version ECL-to-TTL AC Electrical Characteristics V_{EE} = -4.2V to -5.7V, V_{TTL} = +4.5V to +5.5V, V_{CC} = V_{CCA} = GND, C_{L} = 50 pF | Symbol | Parameter | T _C = | –55°C | T _C = | : 25°C | T _C = +125°C | | Units | Conditions | Notes | |---------------------|-----------------------|------------------|-------|------------------|--------|-------------------------|------|-------|--------------|--------------------| | | | Min | Max | Min | Max | Min | Max | | | | | t _{PLH} | CP to T _n | 3.1 | 8.0 | 3.1 | 7.3 | 3.3 | 8.0 | ns | Figures 1, 2 | (Notes 11, 12, 13) | | t _{PZH} | OE to T _n | 3.4 | 9.1 | 3.7 | 9.0 | 4.0 | 10.1 | ns | Figures 3, 4 | (Notes 11, 12, | | t _{PZL} | (Enable Time) | 3.7 | 9.5 | 4.0 | 9.3 | 4.3 | 10.4 | | | 13) | | t _{PHZ} | OE to T _n | 3.2 | 10.0 | 3.3 | 9.0 | 3.5 | 9.3 | ns | Figures 3, 5 | | | t _{PLZ} | (Disable Time) | 3.0 | 9.8 | 3.4 | 8.8 | 4.1 | 10.4 | | | | | t _{PHZ} | DIR to T _n | 2.6 | 9.5 | 2.8 | 8.8 | 3.0 | 9.0 | ns | Figures 3, 6 | | | t _{PLZ} | (Disable Time) | 2.7 | 8.7 | 3.1 | 8.0 | 4.0 | 9.6 | | | | | t _{set} | E _n to CP | 2.5 | | 2.0 | | 2.5 | | ns | Figures 3, 4 | (Note 14) | | t _{hold} | E _n to CP | 3.0 | | 2.5 | | 3.0 | | ns | Figures 3, 4 | | | t _{pw} (H) | Pulse Width CP | 2.5 | | 2.5 | | 5.0 | | ns | Figures 3, 4 | (Note 14) | | f _{MAX} | СР | 200 | | 200 | | 100 | | MHz | | | Note 11: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures. Note 12: Screen tested 100% on each device at +25°C, temperature only, Subgroup A9. Note 13: Sample tested (Method 5005, Table I) on each mfg. lot at +25°C, Subgroup A9, and at +125°C and -55°C temperatures, Subgroups A10 and A11. Note 14: Not tested at +25°C, +125°C and -55°C temperature (design characterization data). #### Test Circuitry (TTL-to-ECL) Note 15: $R_T = 50\Omega$ termination resistive load. When an input or output is being monitored by a scope, R_T is supplied by the scope's 50Ω input resistance. When an input or output is not being monitored, an external 50Ω resistance must be applied to serve as R_T . Note 16: TTL and ECL force signals are brought to the DUT via 50Ω coax lines. Note 17: V_{TTL} is decoupled to ground with 0.1 μ F, V_{EE} is decoupled to ground with 0.01 μ F and V_{CC} is connected to ground. #### FIGURE 1. TTL-to-ECL AC Test Circuit ## Switching Waveforms (TTL-to-ECL) FIGURE 2. TTL to ECL Transition—Propagation Delay and Transition Times 7 #### Test Circuitry (ECL-to-TTL) Note 18: $R_T = 50\Omega$ termination resistive load. When an input or output is being monitored by a scope, R_T is supplied by the scope's 50Ω input resistance. When an input or output is not being monitored, an external 50Ω resistance must be applied to serve as R_T . Note 19: The TTL TRI-STATE pull-up switch is connected to +7V only for ZL and LZ tests. Note 20: TTL and ECL force signals are brought to the DUT via 50Ω coax lines. Note 21: V_{TTL} is decoupled to ground with 0.1 μ F, V_{EE} is decoupled to ground with 0.01 μ F and V_{CC} is connected to ground. #### FIGURE 3. ECL-to-TTL AC Test Circuit #### Switching Waveforms (ECL-to-TTL) Note: DIR is LOW, OE is HIGH FIGURE 4. ECL-to-TTL Transition — Propagation Delay and Transition Times ### Switching Waveforms (ECL-to-TTL) (Continued) Note: DIR is LOW FIGURE 5. ECL-to-TTL Transition, OE to TTL Output, Enable and Disable Times Note: OE is HIGH FIGURE 6. ECL-to-TTL Transition, DIR to TTL Output, Disable Time #### Physical Dimensions inches (millimeters) unless otherwise noted 24-Lead Ceramic Dual-In-Line Package (0.400" Wide) (D) Package Number J24E 24-Lead Quad Cerpak (F) Package Number W24B #### **Notes** #### LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. **National Semiconductor** Corporation Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com www.national.com **National Semiconductor** Europe Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 **National Semiconductor** Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com **National Semiconductor** Tel: 81-3-5639-7560 Fax: 81-3-5639-7507