3-ELEMENT GRAPHIC EQUALIZER WITH MICROCOMPUTER INTERFACE

DESCRIPTION

The M62416 is a tone controller IC.

The IC has a resonance circuitry and is, with 8-bit serial data sent from a microcomputer, capable of performing 2 channel, 3 band tone control.

It is best suited to preset tone control applications.

FEATURES

- Housed in 24-pin shrink package (SSOP)
- Built-in microcomputer interface circuit controlled by 8-bit serial data
- Built-in 2 channel, 3 band tone control.
- Low noise: Vno = 10 μVms (typ.) <IHF-A>
- Low distortion factor: THD = 0.03% (typ.)

Outline 24P4D (P)

2.54mm pitch 300mil DIP (6.3mm×29.2mm×3.3mm)

Outline 24P2Q-A (FP)

0.8mm pitch 300mil SSOP (5.3mm×10.1mm×1.8mm)

RECOMMENDED OPERATING CONDITIONS

3-ELEMENT GRAPHIC EQUALIZER WITH MICROCOMPUTER INTERFACE

INPUT/OUTPUT FORM (Design values are indicated in figure.)

nits Resistance : Ω Capacitance: F

3-ELEMENT GRAPHIC EQUALIZER WITH MICROCOMPUTER INTERFACE

PIN DESCRIPTION

Pin No.	Name	Function			
① (29)	Input 1 (2)	Ch 1 (2) signal input			
② (23)	Bass input 1 (2)	Bass resonance amp input			
③ (29)	Bass output 1 (2)	Bass resonance amp output			
④ (②)	Bass 1 (2)	Bass gain selection			
(S) (S)	Mid-band input 1 (2)	Mid-band resonance amp input			
® (19)	Mid-band output 1 (2)	Mid-band resonance amp output			
⑦ (®)	Mid-band 1 (2)	Mid-band gain selection			
⑧ (⑰)	Treble 1 (2)	Treble gain selection			
(B)	Output 1 (2)	Ch 1 (2) signal output			
100	GND	Ground			
M	Data	Input of control data sent from μ-COM to IC			
		Receives data in sync with clock			
122	Latch	Data latch of serial data sent from μ-COM to IC			
W		Operates at falling edges.			
13	Clock	Clock used to transmit serial data from μ-COM to IC			
		Operates at rising edges.			
Œ	Filter	Removal of ripples in power source			
(5)	Power Supply	Applies 6 to 12 V (rating: 7 V)			

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Ratings	Unit
V∞	Supply voltage	14	٧
Pd	Power dissipation	540	mW
kø.	Thermal derating (Ta≥25°C)	5.4	mW/°C
Topr	Operating temperature range	-20 to 75	°C
Tetg	Storage temperature	-55 to 125	°C

ELECTRICAL CHARACTERISTICS (Ta = 25°C, Vcc = 7 V, f = 1 kHz, and flat, unless otherwise noted)

Sumbal	Parameter		Davamatav	Took comditions		Limits											
Symbol			rarameter	Test conditions	Min	Тур	Max	Unit									
lcc	Circuit current			Quiescent	13	23	33	mA									
GV(flat)	Gain		,	·		0		dB									
G(Bass)B	} }		Boost (max.)		-	9	-	₫B									
G(Bass)C		Bass	Cut (max.)	,	_	-6		dB									
G(MID)B		_	Mid-band	Boost (max.)		_	6	-	dB								
G(MID)C	Tone	MIG-DATIO	Cut (max.)		_	-3		dB									
G(Tre)B	_	_	_	_	_	_	_	_			Treble	Boost (max.)			9	_	dB
G(Tre)C		Treble	Cut (max.)		_	− 6	_	dB									
Gstep	Control s		p			3	_	dB									
Vom	Maximum output voltage		out voltage	THD = 1%	1.5	20	_	Vms									
THD	Total harmonic distortion		distortion	Vo = 0.5Vms		0.03	0.3	%									
VNO	Output noise voltage		oltage	Rg = 10kΩ, filter: IHF-A	_	10	23	μVrms									
CSep	Channel separation		ation	Filter: IHF-A	-	-90	-70	dB									

DIGITAL CONTROL SPECIFICATIONS Data format

Timing diagram (recommended conditions)

Note: 1. CLOCK operates at rising edges of pulse.

- 2. LATCH operates at rising edges of pulse.
- 3. Recommended imput level
 - "H" level:more than 4V
 - "L "levelsless than 1V.

DATA SETTING TABLE

Treble

		Data		
	D5	D6	D7	Gain
	Н	Н	Н	9dB
Boost	Н	H	L	6dB
	Н	L	Н	3dB
Flat	L	L	L	0dB
Cut	L	L	Н	–3dB
001	L	Н	L	–6dB

Mid-band

	Data		Coin	
_	D3	D4	Gain	
Boost	H	Н	6dB	
Doost	H	L	3dB	
Flat	L	L	0dB	
Cut	L	Н	–3dB	

Bass

	Data			Coin	
	D0	D1	D2	Gain	
	H	Η	H	9dB	
Boost	Η	I	Ĺ	6dB	
	Н	L	Н	3dB	
Flat	L	L	L	0dB	
Cut	L	L	Н	~3dB	
001	L	Ι	L	-6dB	

FUNCTION DESCRIPTION

(1) Tone block: Processes main analog signals.

- Input signals are separated into bass, mid, and treble bands. Resonance circuits (band-pass filters) separate signals into bass and mid bands, while treble is separated by a CR filter. These separated signals are boosted or cut by making selection from internal gain setting resistors.
- 2) Tone control step.

Bass: $-6dB \sim 0dB \sim 9dB$ 3dB/step Mid-band: $-3dB \sim 0dB \sim 6dB$ 3dB/step Treble: $-6dB \sim 0dB \sim 9dB$ 3dB/step

- Gain control in each band is performed by means of serial data sent from a microcomputer.
- (2) Control block: Processes data transmitted from a micro-computer to control the gain in each band.

- Send initialization data at power up, because the internal logic is unstable at power up.
- 8-bit serial data is used for control by microcomputer. For data settings, see Digital Control Specifications on page 6.

TEST CIRCUIT

TYPICAL CHARACTERISTICS

(1) Flat boost cut

(a) Flat

SW is center position, the frequency characteristics will be level regardless of the resonance circuit.

OZ is an impedance in the resonance circuit.

(b) Boost

When the SW is in boost position, the resonance circuit is connected to the NF loop of the output buffer amplifier.

The gain Av is
$$Av = \frac{R2 + Z + VR}{Z + VR}$$

The output voltage eo is

$$eo = Av \cdot ei = \frac{R2 + Z + VR}{Z + VR} ei$$

When Z is smallest, the gain in resonance is the greatest, and the optional frequency is then boosted.

(c) Cut

When the SW is in cut position, the resonance circuit is connected to the input side of the output buffer amplifier.

The gain Av is

$$ei = \frac{VR + Z}{R1 + VR + z}$$
 ei AV = 1 and

The output voltage eo is

$$eo = Av \cdot ei = \frac{VR + Z}{R1 + VR + z} ei$$

When Z is smallest, the gain in resonance is the greatest, and the optional frequency is then cut.

(2) Resonance circuit

The simulated inductor circuit converts L in the R, L, C serial resonance circuit into a CR pin by the buffer functions of active pins such as resisters. Operational amplifiers, works in a almost the same way as the R, L, C serial resonance circuit.

Fig.1 Tone control circuit

Fig.2 Equivalent circuit

(a) Frequency fo

The L, R, C resonance frequency to is

When the voltage ei is supplied to resonance circuit as shown in Fig.3

Fig.4

$$\Theta L = \frac{j\omega L}{R3 + j\omega L} \Theta i$$

Fig.3

if el is then supplied to the pins C1, R4 as shown in Fig.4

$$eR = \frac{j\omega C2 \cdot R4}{1 + j\omega C2 \cdot R4} ei = \frac{j\omega C2 \cdot R3 \cdot R4}{R3 + j\omega C2 \cdot R3 \cdot R4}$$

$$L = C2 \cdot R3 \cdot R4 \quad \text{When eL} = eR \quad ----- \quad \text{Equation No.2}$$

If eR is replaced by eL and L serial circuit, R3 and C1 are automatically connected in order to keep the value of en stable, a buffer amplifier should be used. The buffer amplifier is equivalent to an impedance. By equations No.1 and No.2, the resonance frequency, fo is

$$fo = \frac{1}{2\pi\sqrt{C1 \cdot C2 \cdot R3 \cdot R4}}$$

(b) Shape of resonance

About Shape of resonance, Q is defined by the ratio of ω o(ω o=2 π to) and the frequency band width ω 2- ω 1, (Gmax/ $\sqrt{2}$)

The value of Q is found by the following equation;

$$Q = \sqrt{\frac{C2 \cdot R4}{C1 \cdot R3}}$$

The greater the value of Q the narrower the frequency band width and vice versa. The M62416FP is composed of R3, R4, so Q is defined by selecting the external condensor.

3-ELEMENT GRAPHIC EQUALIZER WITH MICROCOMPUTER INTERFACE

APPLICATION EXAMPLE

Frequency characteristics

