PECL* to TTL Translator (+5 Vdc Power Supply Only)

The MC10H350 is a member of Motorola's 10H family of high performance ECL logic. It consists of 4 translators with differential inputs and TTL outputs. The 3-state outputs can be disabled by applying a HIGH TTL logic level on the common OE input.

The MC10H350 is designed to be used primarily in systems incorporating both ECL and TTL logic operating off a common power supply. The separate VCC power pins are not connected internally and thus isolate the noisy TTL VCC runs from the relatively quiet ECL VCC runs on the printed circuit board. The differential inputs allow the H350 to be used as an inverting or noninverting translator, or a differential line receiver. The H350 can also drive CMOS with the addition of a pullup resistor.

Propagation Delay, 3.5 ns Typical

MECL 10K-Compatible

MC10H350

LSUFFIX CERAMIC PACKAGE CASE 620-10

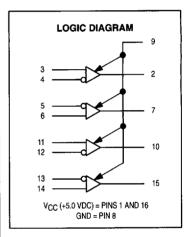
P SUFFIX PLASTIC PACKAGE CASE 648-08

FN SUFFIX PLCC CASE 775-02

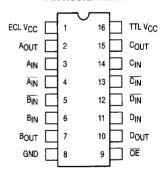
MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit	
Power Supply (VEE = Gnd)	Vcc	7.0	Vdc	
Operating Temperature Range	TA	0 to +75	°C	
Storage Temperature Range — Plastic — Ceramic	⊤stg	-55 to +150 -55 to +165	°C °C	

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V ±5%) (See Note 1)


		1	$T_A = 0^{\circ}C$ to $75^{\circ}C$		Unit
Characteristic		Symbol	Min	Max	
Power Supply Current	TTL ECL	lcc	_	20 12	mA
Input Current High	Pin 9 Others	INH INH	_ _	20 50	μА
Input Current Low	Pin 9 Others	I _{IL} INL	_	-0.6 50	mA μA
Input Voltage High	Pin 9	V _{IH}	2.0		Vdc
Input Voltage Low	Pin 9	VIL		0.8	Vdc
Differential Input Voltage (1)	ins 3–6, 11–14 (1)	V _{DIFF}	350	-	m∨
Voltage Common Mode	Pins 3-6, 11-14	V _{CM}	2.8	Vcc	Vdc
Output Voltage High IOH = 3.0 mA		VOH	2.7	_	Vdc
Output Voltage Low IOL = 20 mA		VOL		0.5	Vdc
Short Circuit Current VOUT = 0 V		los	-60	-150	mA
Output Disable Current High VOUT = 2.7 V		lozн	_	50	μА
Output Disable Current Low VOUT = 0.5 V		lozL	_	-50	μА

- (1) Common mode input voltage to pins 3-4, 5-6, 11-12, 13-14 must be between the values of 2.8 V and 5.0 V. This common mode input voltage range includes the differential input swing.


 (2) For single ended use, apply 3.75 V (Vags) to either input depending on output polarity required. Signal level range to other input is 3.3 V to 4.2.

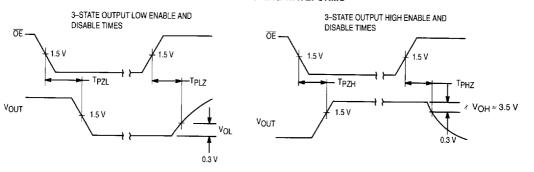
 (3) Any unused gates should have the inverting inputs tied to V_{CC} and the non-inverting inputs tied to ground to prevent output glitching.

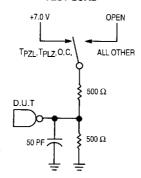
 (4) 1.0 V to 2.0 V w/50 pF into 500 ohms.
- *Positive Emitter Coupled Logic

PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 6-11.

9/96




ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 \text{ V} \pm 5\%$) (See Notes 1 & 4)

		T _A = 0°C to 75°C					
Characteristic	Symbol	Min	Max	Unit			
AC PARAMETERS ($C_L = 50 \text{ pF}$) ($V_{CC} = 5.0 \pm 5\%$) ($T_A = 0^{\circ}\text{C to } 75^{\circ}\text{C}$)							
Propagation Delay Data	t _{pd}	1.5	5.0	ns			
Rise Time	tr	0.3	1.6	ns			
Fall Time	tf	0.3	1.6	ns			
Output Disable Time	^t pdLZ ^t pdHZ	2.0 2.0	6.0 6.0	ns			
Output Enable Time	^t pdZL ^t pdZH	2.0 2.0	8.0 8.0	ns			

3-STATE SWITCHING WAVEFORMS

TEST LOAD

*INCLUDES JIG AND PROBE CAPACITANCE

Application Note: Pin 9 is an $\overline{\text{OE}}$ and the 10H350 is disabled when $\overline{\text{OE}}$ is at V_{IH} or higher.

2