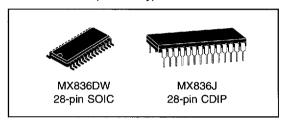
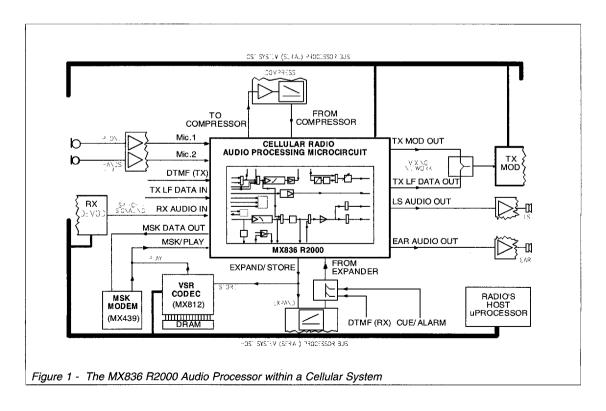
MX·CDM, INC.

Preliminary Information


RADIOCOM 2000 SYSTEM AUDIO PROCESSOR


Features

- Full-Duplex Audio Processing for R2000 Cellular System
- On-Chip Speech and Data Facilities
 - TX/RX/Data Filtering & Gain
 - Pre-/De-Emphasis Deviation Limiter
- Serial μProcessor Interface
- TX and RX LF-Data Paths
- MSK and (50 Baud) LF-Data Facilities
- Hands-Free Compatibility
- Powersave (Low-Current) Settings

Access to External Processes

- Compression Expansion
- Signaling/Data Mixing
- VSR Codec (Store/Play)

Description

The MX836 is a μProcessor-controlled full-duplex audio processor on a single-chip with separate TX, RX and LF (50 baud) data paths to provide all the filter/ gain/limiting functions necessary to pre-process audio, data and signaling in the Radiocom 2000 (R2000) Cellular communications system.

Selectable inputs available for transmission include a choice of two microphones, DTMF/signaling or MSK/ data, with access, in this path, to external voice compression circuitry. Operationally the TX path provides input gain/filtering, pre-emphasis, a deviation limiter and TX Modulation Drive controls. Available to the transmit function is a separate path to process LF system control data for amalgamation externally with TX voiceband audio.

The RX path consists of an input gain/de-emphasis/ filter block for voice and data, inputs from an external audio expansion system and output gain controls driving loudspeaker and earpiece circuitry.

In the RX path LF data signals are separated from the incoming audio via an LF filter and made available at a separate pin for use by the system µProcessor

Unique to the MX816/826/836 cellular audio processors is the ability to route audio (TX or RX) to an external Voice Store and Retrieve (VSR) device such as the MX802 or MX812, thus providing the radio system with a voice answering and announcement facility using external DRAM.

The MX836, a low-power CMOS device, which reduces the amount of microcircuits and components required in a cellular audio system by providing more functions on a single chip, is available in 28-pin plastic small outline (S.O.I.C.) surface mount and cerdip DIL packages.

Function Pin **Xtal:** The output of the on-chip clock oscillator. 1 2 **Xtal/Clock:** The input to the on-chip clock oscillator. A Xtal or externally derived clock (f_{XTAI}) should be connected here. Note that operation of the MX836 without a suitable Xtal or clock input may cause device damage. See Figure 2 (notes). Serial Clock: The "C-BUS" serial data clock input. This clock, produced by the µController, is used 3 for transfer timing of commands and data to the MX836. See Timing Diagrams. Command Data: The "C-BUS" serial data input from the µController. Data is loaded to the MX836 4 in 8-bit bytes, MSB (B7) first, and LSB (B0) last, synchronized to the Serial Clock. See Timing Diagrams. Chip Select (CS): The "C-BUS" data loading control function. This input is provided by the 5 μController. Data transfer sequences are initiated, completed or aborted by the CS signal. See Timing Diagrams. V_{BIAS} : The internal circuitry bias line, held at $V_{\text{DD}}/2$ this pin must be decoupled to V_{ss} . See Figure 2. 6 7 **RX Audio In:** Normally taken from the radio's discriminator output. This input has a $1M\Omega$ internal resistor to V_{gue} and requires connecting via a capacitor. Expand/Store: A common output that can be used as either an input to an external audio 8 expandor or the input to a voice storage medium such as the MX812. Components relevant to the external device requirements should be used at this output. See Figures 2 and 4. 9 (Expanded) Audio In: The audio input, via SW5, from an external expander or audio mixing function. This input has a $1M\Omega$ internal resistor to V_{BIAS} and requires connecting via a capacitor. See Figures 2 and 4. TX Mod Out: The composite TX audio output to the transmitter modulator from a variable 10 attenuation stage (11_µ). This output is set to V_{pias} via an internal 1M Ω resistor when set to Powersave or OFF. LS Audio Out: An audio output of the RX Path (or audio selected by SW2 and SW4 Figure 4) for a 11 loudspeaker system. Available for handsfree operation this output is controlled by the RX Gain and LS Volume Command (12,) and is internally connected to V_{BIAS} when not required. A driver amplifier may be required at this output. Note: To minimize aliasing effects, lowpass filtering may be required at the inputs to this device (especially those supplied from switched-capacitor-type devices) to ensure the input spectrum is kept below 63kHz.

Page 332

Pin	Function
12	Ear Audio Out: An audio output of the RX Path (or audio selected by SW2 and SW4–Figure 4), available as an output for a handset earpiece. Separate from the LS Audio Out function, this output is controlled by the LF Data Gain and Ear Volume Command (13 _H) and is internally connected to V _{BIAS} when not required. A driver amplifier may be required at this output.
13	TX LF Data Out: The output, if required, to the TX Modulator, of LF (50 baud) filtered and leveladjusted digital data.
14	V _{ss} : Negative supply. Signal ground.
15	TX LF Data In: The input of LF (50 baud) digital data for transmission, from an external modem. This input has an internal $1M\Omega$ resistor to V_{BIAS} and should be connected via a capacitor.
16	RX LF Data Out: The output, to a 50 baud modem, of the received, filtered, LF data. This pin is used with the 50 Baud Data, Slicer In pins and external components to filter and limit the received LF data. See Figure 4.
17	Slicer In: The input to the data slicer. Employed as shown in Figure 4 to filter and limit the received LF data.
18	RX 50 Baud Data Out: The output of the received 50 baud data. See Figures 2 and 4.
19	MSK Out: The de-emphasized RX audio output available for access to the received MSK data. This output could be directed to an MSK Modem such as the MX439.
20	Deviation Limiter In: Input to the on-chip deviation Limiter. This input should be a.c. coupled to the Pre-Emphasis Out pin. The a.c. coupling is required to achieve the best possible symmetry of limiting as this input has a $1MΩ$ internal resistor to V_{BIAS} . See Figure 2.
21	Pre-Emphasis Out: Audio output from the TX Input Gain/Pre-Emphasis function. This output should be a.c. coupled to the Deviation Limiter In pin. See Figures 2 and 4.
22	DTMF In: To introduce DTMF type audio, at a suitable level for transmission, to the TX Path, controlled by SW2 (Configuration Command (10 _H)). This input has an internal 1M Ω resistor to V _{BIAS} and should be connected via a capacitor.
23	Compression In: The audio input from an external compression system. This input has an internal $1M\Omega$ resistor to V_{BIAS} and should be connected via a capacitor.
24	Compression: The output to an external audio compression system. Currently available compressor/expanders have Op-Amps incorporated. The compressor can be bypassed by SW2.
25	Mic.2 In: TX voice (Mic.) inputs, selectable by SW1 available for handsfree mic./handset mic. or any TX audio input. Pre-amplification may be required prior to these inputs. Each
26	Mic.1 In: input has an internal 1M Ω resistor to V _{BIAS} and should be connected via a capacitor.
27	MSK/Play In: The TX MSK data input via SW2. This can also be used to input (replay) from a voice storage device such as the MX812. This "replayed" audio can be sent to RX or TX paths allowing a Messaging/Voice Notepad/Answering facility. Both MX439 MSK Modem and MX812 VSR Codec outputs can be wired together at this pin (OR¹d) if the functions are activated one-at-a-time. This input has an internal 1MΩ resistor to V _{BIAS} and should be connected via a capacitor.
28	V _{DD} : Positive supply. A single +5 volt power supply is required. Levels and voltages within this audio processor are dependent upon this supply.

C-BUS is MX-COM's proprietary standard for the transmission of commands and data between a μ Controller and the relevant Cellular IC's. It may be used with any μ Controller, and can, if desired, take advantage of the hardware serial I/O functions embodied into many types of μ Controller. The "C-BUS" data rate is determined solely by the μ Controller. For further details refer to the DBS 800 System Information Document.

Application Information

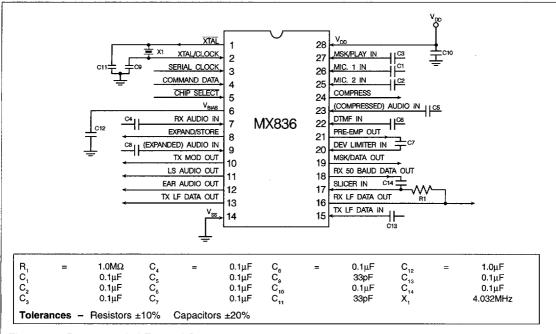


Figure 2 - Recommended External Components

1. Xtal/clock operation

Operation of any MX-COM IC without a Xtal or clock input may cause device damage. To minimize damage in the event of a Xtal/drive failure, it is recommended that a current limiting device (resistor or fast-reaction fuse) is installed on the power supply (V_{DD}) .

2. MSK Modem

The MX439, a general purpose MSK Modem, could be used with this R2000 system Audio Processor. The MX439 is a non-formatted modem, which, with regard to Xtal/clock frequencies and $\mu\text{Processor}$ interface, is compatible with both Mobile/Portable and Base Station applications.

Reference Signal Levels

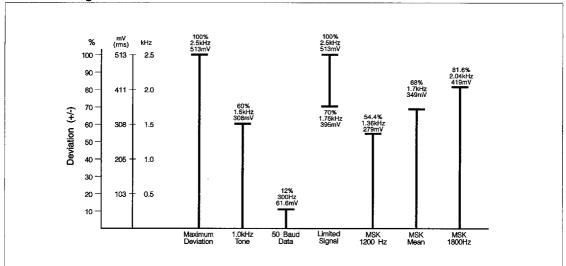
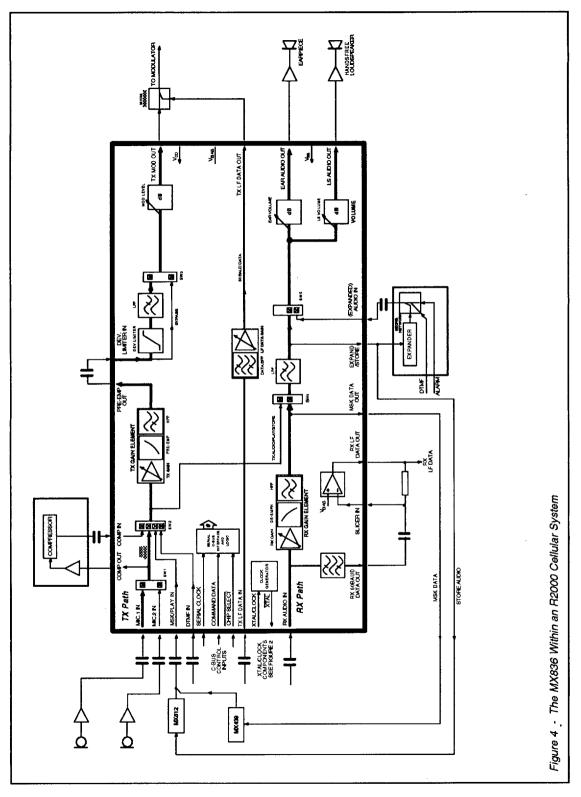



Figure 3 - R2000 Signal Deviation Levels and corresponding TX Mod Outputs with the Mod Level set to 0dB

The Controlling System

C-BUS is designed for low IC pin-count, flexibility in handling variable amounts of data, and simplicity of system design and μ Controller software. It may be used with any μ Controller, and can, if desired, take advantage of the hardware and serial I/O functions built into many types of μ Controller. Because of this flexibility and because the BUS data rate is determined solely by the μ Controller, the system designer has complete freedom to choose a μ Controller appropriate to the overall system processing requirements.

Control of the functions and levels within the MX836 R2000 Audio Processor is by a group of Address/Commands and appended data instructions from the system microcontroller. The use of these instructions is detailed in the following paragraphs and tables.

Command Assignment	Hex	Ac										Command Data	Table_
		MSB					3		LS	B) 		
General Reset	01	0	0	0	0	0	0	0	1				
Configuration Command	10	0	0	0	1	0	0	0	0		+	1 byte	2
TX Gain & Mod. Command	11	0	0	0	1	0	0	0	1		+	1 byte	3
RX Gain & LS Vol.	12	0	0	0	1	0	0	1	0	-	+	1 byte	4
LF Data Gain & Ear Vol.	13	0	0	0	1	0	0	1	1		+	1 byte	5

In C-BUS protocol the MX836 is allocated Address/ Command values 10, to 13, Configuration, TX/RX Gains, and SAT/Powersave assignments and data requirements are given in Table 1.

Each instruction consists of an Address/Command (A/C) byte followed by a data instruction formulated from the following tables.

Commands and Data are only to be loaded in the group configurations detailed, as the C-BUS interface

recognized the first byte after Chip Select (logic 0) as an Address/Command. Function or Level control data, which is detailed in Tables 2, 3, 4, and 5, is acted upon at the end of the loaded instruction. See Timing Diagrams, Figures 5 and 6.

Upon power-up the value of the "bits" in this device will be random (either "0" or "1"). A General Reset Command (01") is required to set all MX816 registers to 00".

Configuration Command

(Preceded by A/C 10.)

TX Gain & Mod. Command

(Preceded by A/C 11,)

Configuratio	n Command	(Preceded by A/C 10 _H)
Setti	ng	Control Bits
(MS Bit 0 1		Transmitted First RX Gain Element Powersave Enable
6 0 1	(exc	All Functions cept RX Gain Element) Powersave Enable
5 0 1		SW5 Expander Expander Bypass Expander Route
		SW4 TX/RX Audio TX Store/Audio RX Store/Audio
<i>3</i> 0 1		SW3 Dev. Limiter Dev. Limiter Bypass Dev. Limiter Route
2 0 1		SW1 Mic. Inputs Mic. 1 Input Mic. 2 Input
1 0 0 1 1	0 0 1 0 1	SW2 TX Function DTMF In Compressor In Compressor Bypass MSK/Play In
Table 2 -	Configuration	Commands

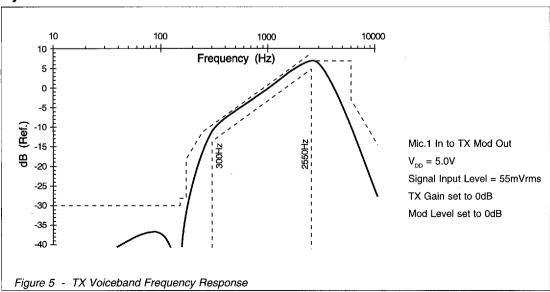
Setting	Gain (dB)
(MSB) 7 6 5 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1	Transmitted First TX Mod. Level
3 2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1	0 TX Input Gain 0 -2.65dB 1 -2.05dB 0 -1.50dB 1 -0.95dB 1 -0.95dB 0 -0.45dB 1 0dB 0 0.45dB 1 0.85dB 1 1.25dB 1 1.65dB 0 1.25dB 1 1.65dB 0 2.05dB 1 2.40dB 0 2.70dB 1 3.05dB
Table 3 - TX	Gain & Mod. Commands

MX-COM, INC.

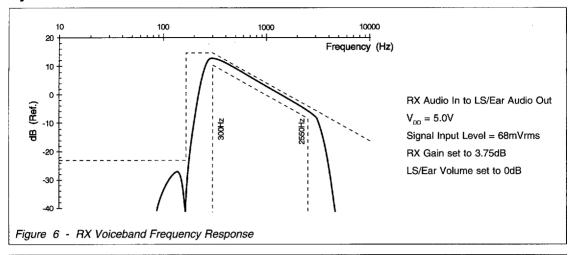
The Controlling System

RX Gain & LS Vol.

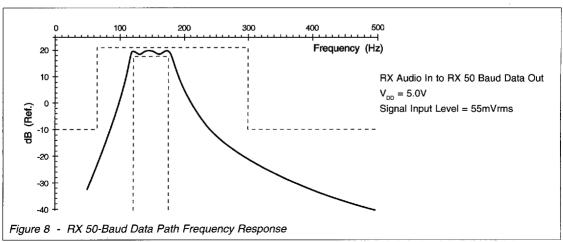
(Preceded by A/C 12,)

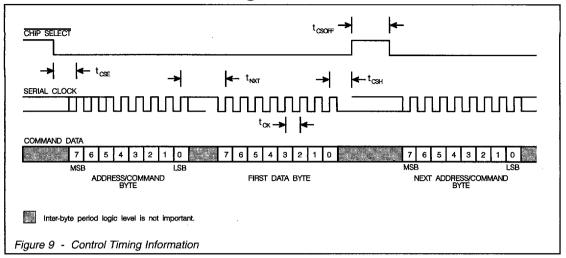

LF Data Gain & Ear Vol.

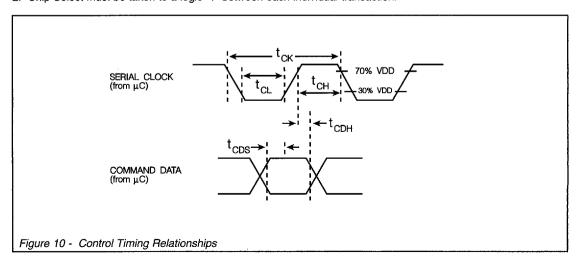
(Preceded by A/C 13,)


Setting	Gain (dB)
(MSB) 7 6 5 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1	Transmitted First 4 RX LS Volume 0 OFF (Low Z to V BIAS) 1 -28.0dB 0 -26.0dB 1 -24.0dB 0 -22.0dB 1 -20.0dB 1 -18.0dB 1 -18.0dB 1 -18.0dB 0 -14.0dB 1 -12.0dB 0 -10.0dB 1 -8.0dB 0 -6.0dB 1 -8.0dB 1 -8.0dB
3 2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1	0 RX Input Gain 0 3.75dB 1 4.30dB 0 4.80dB 1 5.30dB 0 5.80dB 1 6.20dB 0 6.55dB 1 7.05dB 0 7.40dB 1 7.80dB 0 8.15dB 1 8.50dB 0 8.80dB 1 9.10dB 0 9.40dB 1 9.70dB
Table 4 - RX	Gain and Volume Commands

	Sett	ing		Gain (dB)
MSB 7 0 0 0 0 0 1 1 1 1 1 1 1 1	6 00001111000011111	5000110001100011	4010101010101	Transmitted First RX Ear Volume OFF (Low Z to V BLAS) -28.0 -26.0 -24.0 -22.0 -20.0 -18.0 -16.0 -14.0 -12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0
3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	2 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1	1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1	0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	LF (50 Baud) Data Gain OFF (Low Z to V _{BIAS}) -2.60 -2.20 -1.80 -1.40 -1.00 -0.70 -0.35 0 0.30 0.60 0.90 1.20 1.50 1.75 2.00
Table 5 -	- LF	Dat	a Ga	ain and RX Ear Vol. Command


System Performance


System Performance


Timing Information

Parameter		See Note	Min.	Тур.	Max.	Unit !
"CS Enable" to "clock high"	t _{CSE}	1	2.0	-	-	μs
Last "clock high" to "CS high"	t _{CSH}	1	4.0	-	-	μs
"CS high" time between transactions	tcsoff	1,2	2.0	-	-	μs
Clock Cycle Time	t _{CK}	1	2.0	-	-	μs
Inter byte time	t _{NXT}	1	4.0	-	-	μs
Serial Clock-High Period	t _{CH}		500	-	-	ns
Serial Clock-Low Period	t _{CL}		500	-	•	ns
Command Data Set-up Time	t _{CDS}		250	-	-	ns
Command Data Hold Time	t _{CDH}		0	-	-	ns

Notes

- 1. These minimum timing values are altered during operation of the MX812 VSR Codec.
- 2. Chip Select must be taken to a logic "1" between each individual transaction.

Specifications

Absolute Maximum Ratings

Exceeding the maximum rating can result in device damage. Operation of the device outside the operating limits is not suggested.

Supply Voltage Input Voltage at any pin -0.3 to 7.0 V

±20mA

(ref V_{SS} = 0V)
Sink/source current (supply pins)

-0.3 to (V_{DD}+0.3V) ±30mA

(other pins)

Total device dissipation

@ T_{AMB} 25°C Derating Operating Temperature Storage Temperature 800mW Max. 10mW/°C -40°C to +85°C -55°C to +125°C

Operating Limits

All devices were measured under the following conditions unless otherwise noted.

 $V_{DD} = 5.0V$

 $T_{AMB} = 25^{\circ}C$

Xtal/Clock f₀ = 4.032MHz

Audio Level 0dB ref = 308mVrms @ 1kHz

Characteristics	See Note	Min.	Typ.	Mäx.	Unit;
Static Values					
Supply Voltage		4.5	5.0	5.5	V
Supply Current - All Operating - RX Data Mode	1	_	10.0 2.5	_	mA mA
- Powersave All	'	_	0.6	_	mA
Alias Frequency		_	63.0	_	kHz
On-Chip Xtal Oscillator					
R _{IN}		10.0		_	MΩ
R [™] R _{OUT} Inverter Gain		_	10.0 10.0	-	kΩ V/V
Gain/Bandwidth Product		_	10.0	_	MHz
Analog Input Impedances			10.0		1411 12
Mic.1 & 2, MSK/Play, Comp. In, DTMF In,					
TX LF Data In		_	500	_	kΩ
Dev. Limiter In, RX Audio In		_	100	-	kΩ
(Expanded) Audio In		40.0	47.0	-	kΩ
Slicer In Analog Output Impedances		10.0	_	_	МΩ
Pre-Emp Out, TX Mod. Out, Expand/Store,					
MSK Data Out, TX 50 Baud Data Out		_	600	_	Ω
LS and Ear Audio		-	1.0		$k\Omega$
RX LF Data Out		-	2.0	_	kΩ
Switches - ON		-	1.0	_	kΩ
- OFF	•	10.0 3.5	_	-	MΩ V
Input Logic "1" Level Input Logic "0" Level	2 2	3.5	_	1.5	V
I _{IN} (Logic "1" or "0")	2	-1.0	_	1.0	μA
Input Capacitance	2	_	_	7.5	pF
TX Signal Path					
Analog Signal Input Levels					
Mic. 1 and 2, MSK/Play, DTMF,			•		-ID
Comp. In TX LF Data In	3	_	0 0	_	dB dB
Analog Signal Output Levels		_	U	_	UD
Pre-Emp Out, TX Mod Out	3	_	0	***	dB
Tx LF Data Out			Ó	_	dB
Path Gains/Levels					
TX Gain - 11 _H		0.05			ID.
Nominal Adjüstment Range Error of any Setting		-2.65 -0.2		3.65 0.2	dB dB
Dev Limiter		-0.2	_	0.2	uБ
Threshold		_	1375	_	mVp-p
Symmetry		_	7.0	_	vp p
Mod Level Attenuation - 11,					
Nominal Adjustment Range		-5.6		0	dB
Step Size		0.2	0.4	0.6	dB dB
Error of any Setting		-1.0	_	1.0	UD

Characteristics	See Note	Min.	Typ.	Max.	Unit.
TV I E Data Signal Dath		Capaci (Additional) It in Company in The Science Server Secret Se		THE STATE OF THE S	MANUAL DISTRICT OF STREET OF STREET
TX LF Data Signal Path					
Bandpass Filter Passband		120		175	Hz
Gain		120	0	173	dB
		_	U	_	uБ
LF Data Gain Level — 13 _H		-2.6		2.0	dB
Nominal Adjustment Range		-2.0 -0.2		0.2	dB
Error of any Setting Overall		-0.2	_	0.2	uБ
TX Distortion			-40.0	-32.0	dBp
TX Distortion TX Hum and Noise		-	-40.0 -40.0	-20.0	dВ
		_	-40.0	-20.0	uБ
RX Signal Path	3		-7.0		dB
RX Audio Input Level	3 3	-	-7.0	_	dB
LS/Ear Audio Output Level	3	_	U	_	ub
Path Gains/Levels					
RX Gain - 12 _H		3.75		9.70	dB
Nominal Adjustment Range		-0.2		0.2	dB
Error of any Setting		-0.2		0.2	ub
De-Emphasis		900		2100	Hz
Frequency Range		-1.0	0	1.0	dB
Gain at 1kHz		-1.0	-6.0	1.0	dB/oct
Response		_	-6.0		ub/oct
LS/Ear Volume - 12 _H /13 _H		-28.0		0	dB
Nominal Adjustment Range			2.0	2.5	dB
Step Size		1.5	2.0	1.0	dB
Error of any Setting		-1.0	_	1.0	uБ
Overall			40.0	-32.0	dDn
RX Distortion		_	-40.0 -40.0	-32.0 -34.0	dBp dB
RX Hum and Noise		_	-40.0	-34.0	uВ
RX 50 Baud AudioPath					
Bandpass Filter		100		175	Hz
Passband		120	00.0	175 21.0	dB
Gain		19.0	20.0	21.0	UD

Notes

- With reference to the Configuration Command and Figure 3, all functions with the exception of the RX Gain Element may be powersaved. This will still allow signaling data through the MX836 to activate the system via the μProcessor.
- 2. Serial Clock, Command Data and Chip Select inputs.
- 3. Levels equivalent to ±1.5kHz deviation with the settings below:

TX Gain = 0dB RX Gain = 7.05dB Mod Level = 0dB

= 7.05dB LS/Ear Volume = 0dB

Other levels can be achieved by adjusting the above variable gain blocks in accordance with Tables 1 to 5.