# QOCVO

# **QM11033A** BROADBAND HIGH LINEARITY 3P3T ROUTING SWITCH

#### **Product Overview**

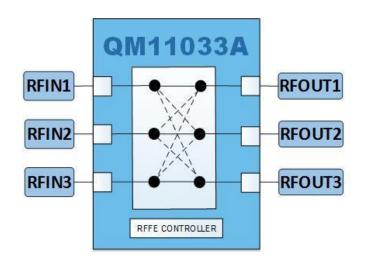
The QM11033A is a low loss, high linearity three-pole three throw addressable switch with performance optimized for transfer routing applications. The QM11033A integrates a serial control system compatible with the RFFE standard. The select lines (SID) provide USID addressability and up to two placements of the QM11033A on the same RFFE bus. The QM11033A runs off a single VIO voltage supply and is packaged in a 16 pin compact 2.0mm x 2.0mm x 0.6mm size device. This offers mobile handset designers a compact, easy-to-use, switch component for quick integration into multimode, multi-band systems.

#### **Functional Block Diagram**



16 Pin 2.0 x 2.0 X x 0.6 mm package

# Key Features


- All Paths <2.5us Switching Speed for optimized SRS applications
- Excellent Insertion Loss and Isolation performance
- High Linearity
- RFFE 2.1 Control Interface with HW Masked Writes
- Broadband Performance Suitable for Multiple Air Interfaces including 5G applications, 100MHz to 6GHz
- Slave ID for Multiple Placements on the Same Board
- Very Low Current Consumption
- DC blocking capacitors are not required
- Single VIO supply

#### **Applications**

- Cellular Handset Applications
- Cellular Modems and USB Devices
- Multi-Mode GSM, CDMA, WCDMA, LTE, 5G Applications

# **Ordering Information**

| Part Number  | Description                       |
|--------------|-----------------------------------|
| QM11033ADK   | Design Kit                        |
| QM11033ASB   | Sample Bag with 5 pcs             |
| QM11033ASR   | Sample Reel with 100 pcs          |
| QM11033ATR13 | Standard 13" Reel with 10,000 pcs |





# **Absolute Maximum Ratings**

| Parameter                                       | Conditions      | Rating         |  |
|-------------------------------------------------|-----------------|----------------|--|
| Storage Temperature                             |                 | -40 to +125 °C |  |
| Operating Temperature                           |                 | -30 to +90°C   |  |
| VIO, SDATA, SCLK, & USID                        |                 | 2.5 V          |  |
| Max GSM or LTE/NR Peak<br>(Instantaneous) Power | 1:1 VSWR, +25°C | 38dBm          |  |
| Max Power (CW, 100% DC)                         | 1:1 VSWR, +90°C | 35dBm          |  |

Operation of this device outside the parameter ranges given above may cause permanent damage.

# Recommended Operating Conditions

| Parameter                                           | Min.                  | Тур. | MAX                   | Units |
|-----------------------------------------------------|-----------------------|------|-----------------------|-------|
| V <sub>IO</sub> Interface Supply Voltage High       | 1.65                  | 1.8  | 1.95                  | V     |
| V <sub>IO</sub> Interface Supply Voltage Low        | 0                     | 0    | 0.45                  | V     |
| V <sub>IO</sub> Interface Supply Current            | 0                     | 36   | 55                    | uA    |
| USID Control Voltage High                           | 1.3                   | 1.8  | 1.95                  | V     |
| USID Control Voltage High                           | 0                     | 0    | 0.45                  | V     |
| SDATA, SCLK – Voltage High                          | 0.8 x V <sub>IO</sub> | 1.8  | Vio                   | V     |
| SDATA, SCLK – Voltage Low                           | 0.00                  | 0.00 | 0.2 x V <sub>IO</sub> | V     |
| Switching Time – 50% last CLK rising edge to 90% RF |                       | 1.8  | 2.5*                  | μs    |

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

\* Max switching speed includes multi-path simultaneous switching.



# **Electrical Specifications**

Test conditions unless otherwise stated: all unused RF ports terminated in 50 $\Omega$ , Input and Output = 50 $\Omega$ , T = 25°C,

 $V_{IO}/SDATA/SCLK/SID = 1.8 V / 0 V$ 

| PARAMETER            | CONDITIONS           | MIN | TYP. | MAX | UNITS |
|----------------------|----------------------|-----|------|-----|-------|
| Insertion Loss       |                      |     |      |     |       |
| RFOUT1/2/3-RFIN1/2/3 | 617 MHz to 960 MHz   |     | 0.35 |     | dB    |
| RFOUT1/2/3-RFIN1/2/3 | 1427 MHz to 2200 MHz |     | 0.5  |     | dB    |
| RFOUT1/2/3-RFIN1/2/3 | 2300 MHz to 2690 MHz |     | 0.6  |     | dB    |
| RFOUT1/2/3-RFIN1/2/3 | 3300 MHz to 3800 MHz |     | 0.8  |     | dB    |
| RFOUT1/2/3-RFIN1/2/3 | 4200 MHz to 5000 MHz |     | 1.1  |     | dB    |
| RFOUT1/2/3-RFIN1/2/3 | 5000 MHz to 6000 MHz |     | 1.2  |     | dB    |

| PARAMETER | ACTIVE PATH    | MEASURED PATH  | FREQUENCY (MHZ) | MIN | TYP. | MAX | UNITS |
|-----------|----------------|----------------|-----------------|-----|------|-----|-------|
|           |                |                |                 |     |      |     |       |
|           |                |                | 617 to 960      |     | 43   |     | dB    |
|           |                |                | 1427 to 2200    |     | 36   |     | dB    |
|           |                | RFIN1 – RFOUT2 | 2300 to 2690    |     | 34   |     | dB    |
|           |                |                | 3300 to 4200    |     | 31   |     | dB    |
|           |                |                | 4200 to 6000    |     | 29   |     | dB    |
|           |                |                | 617 to 960      |     | 58   |     | dB    |
|           |                |                | 1427 to 2200    |     | 52   |     | dB    |
|           | RFIN1 – RFOUT1 | RFIN1 – RFOUT3 | 2300 to 2690    |     | 50   |     | dB    |
|           |                |                | 3300 to 4200    |     | 49   |     | dB    |
|           |                |                | 4200 to 6000    |     | 47   |     | dB    |
| Isolation |                | RFIN1 – RFIN2  | 617 to 960      |     | 47   |     | dB    |
|           |                |                | 1427 to 2200    |     | 41   |     | dB    |
|           |                |                | 2300 to 2690    |     | 39   |     | dB    |
|           |                |                | 3300 to 4200    |     | 38   |     | dB    |
|           |                |                | 4200 to 6000    |     | 35   |     | dB    |
|           |                |                | 617 to 960      |     | 60   |     | dB    |
|           |                |                | 1427 to 2200    |     | 54   |     | dB    |
|           |                | RFIN1 – RFIN3  | 2300 to 2690    |     | 53   |     | dB    |
|           |                |                | 3300 to 4200    |     | 51   |     | dB    |
|           |                |                | 4200 to 6000    |     | 44   |     | dB    |
|           | RFIN1 – RFOUT2 |                | 617 to 960      |     | 54   |     | dB    |
|           |                |                | 1427 to 2200    |     | 50   |     | dB    |

|           |                | RFIN1 – RFOUT1 | 2300 to 2690 | 50 | dB |
|-----------|----------------|----------------|--------------|----|----|
|           |                |                | 3300 to 4200 | 53 | dB |
|           |                |                | 4200 to 6000 | 42 | dB |
|           |                |                | 617 to 960   | 53 | dB |
|           |                |                | 1427 to 2200 | 47 | dB |
|           |                | RFIN1 – RFOUT3 | 2300 to 2690 | 47 | dB |
|           |                |                | 3300 to 4200 | 40 | dB |
|           |                |                |              |    | dB |
| laalatian |                |                | 4200 to 6000 | 39 | dB |
| Isolation |                |                | 617 to 960   | 42 | -  |
|           |                |                | 1427 to 2200 | 36 | dB |
|           |                | RFIN1 – RFIN2  | 2300 to 2690 | 34 | dB |
|           |                |                | 3300 to 4200 | 32 | dB |
|           |                | 4200 to 6000   | 32           | dB |    |
|           |                |                | 617 to 960   | 53 | dB |
|           |                |                | 1427 to 2200 | 47 | dB |
|           |                | RFIN1 – RFIN3  | 2300 to 2690 | 46 | dB |
|           |                |                | 3300 to 4200 | 45 | dB |
|           |                |                | 4200 to 6000 | 45 | dB |
|           |                | RFIN1 – RFOUT1 | 617 to 960   | 59 | dB |
|           |                |                | 1427 to 2200 | 53 | dB |
|           |                |                | 2300 to 2690 | 51 | dB |
|           |                |                | 3300 to 4200 | 49 | dB |
|           |                |                | 4200 to 6000 | 42 | dB |
|           |                |                | 617 to 960   | 43 | dB |
|           |                |                | 1427 to 2200 | 37 | dB |
|           |                | RFIN1 – RFOUT2 | 2300 to 2690 | 35 | dB |
|           |                |                | 3300 to 4200 | 34 | dB |
|           | RFIN1 – RFOUT3 |                | 4200 to 6000 | 34 | dB |
| Isolation |                |                | 617 to 960   | 42 | dB |
|           |                |                | 1427 to 2200 | 35 | dB |
|           |                | RFIN1 – RFIN2  | 2300 to 2690 | 33 | dB |
|           |                |                | 3300 to 4200 | 29 | dB |
|           |                |                | 4200 to 6000 | 27 | dB |
|           |                |                | 617 to 960   | 37 | dB |
|           |                |                | 1427 to 2200 | 31 | dB |
|           |                | RFIN1 – RFIN3  | 2300 to 2690 | 29 | dB |
|           |                |                | 3300 to 4200 | 27 | dB |
|           |                |                | 4200 to 6000 | 26 | dB |
|           |                |                | 617 to 960   | 39 | dB |
|           |                |                | 1427 to 2200 | 32 | dB |
|           |                | RFIN2 – RFOUT2 | 2300 to 2690 | 30 | dB |
|           |                |                | 3300 to 4200 | 28 | dB |
|           |                |                | 4200 to 6000 | 26 | dB |
|           |                |                | 617 to 960   | 45 | dB |

QOCVO



|           | I                                 | 1              |              |    |    |
|-----------|-----------------------------------|----------------|--------------|----|----|
|           |                                   |                | 1427 to 2200 | 39 | dB |
|           |                                   | RFIN2 – RFOUT3 | 2300 to 2690 | 36 | dB |
|           |                                   |                | 3300 to 4200 | 33 | dB |
| Isolation | RFIN2 – RFOUT1                    |                | 4200 to 6000 | 29 | dB |
|           |                                   |                | 617 to 960   | 47 | dB |
|           |                                   |                | 1427 to 2200 | 41 | dB |
|           |                                   | RFIN2 – RFIN1  | 2300 to 2690 | 39 | dB |
|           |                                   |                | 3300 to 4200 | 37 | dB |
|           |                                   |                | 4200 to 6000 | 37 | dB |
|           |                                   |                | 617 to 960   | 45 | dB |
|           |                                   |                | 1427 to 2200 | 39 | dB |
|           |                                   | RFIN2 – RFIN3  | 2300 to 2690 | 37 | dB |
|           |                                   |                | 3300 to 4200 | 35 | dB |
|           |                                   |                | 4200 to 6000 | 35 | dB |
|           |                                   |                | 617 to 960   | 55 | dB |
|           |                                   |                | 1427 to 2200 | 50 | dB |
|           |                                   | RFIN2 – RFOUT1 | 2300 to 2690 | 50 | dB |
|           |                                   |                | 3300 to 4200 | 57 | dB |
|           |                                   |                | 4200 to 6000 | 47 | dB |
|           |                                   | RFIN2 – RFOUT3 | 617 to 960   | 44 | dB |
|           |                                   |                | 1427 to 2200 | 38 | dB |
|           |                                   |                | 2300 to 2690 | 36 | dB |
|           |                                   |                | 3300 to 4200 | 33 | dB |
| Isolation | RFIN2 – RFOUT2                    |                | 4200 to 6000 | 31 | dB |
|           | $\frac{1}{102} = \frac{1}{10012}$ | RFIN2 – RFIN1  | 617 to 960   | 39 | dB |
|           |                                   |                | 1427 to 2200 | 33 | dB |
|           |                                   |                | 2300 to 2690 | 31 | dB |
|           |                                   |                | 3300 to 4200 | 29 | dB |
|           |                                   |                | 4200 to 6000 | 28 | dB |
|           |                                   |                | 617 to 960   | 43 | dB |
|           |                                   |                | 1427 to 2200 | 37 | dB |
|           |                                   | RFIN2 – RFIN3  | 2300 to 2690 | 35 | dB |
|           |                                   |                | 3300 to 4200 | 33 | dB |
|           |                                   |                | 4200 to 6000 | 34 | dB |
|           |                                   |                | 617 to 960   | 59 | dB |
|           |                                   |                | 1427 to 2200 | 54 | dB |
|           |                                   | RFIN2 – RFOUT1 | 2300 to 2690 | 53 | dB |
|           |                                   |                | 3300 to 4200 | 51 | dB |
|           |                                   |                | 4200 to 6000 | 44 | dB |
| Isolation |                                   |                | 617 to 960   | 45 | dB |
|           |                                   |                | 1427 to 2200 | 39 | dB |
|           |                                   | RFIN2 – RFOUT2 | 2300 to 2690 | 38 | dB |
|           |                                   |                | 3300 to 4200 | 36 | dB |
|           | RFIN2 – RFOUT3                    |                | 4200 to 6000 | 38 | dB |

# QOCVO

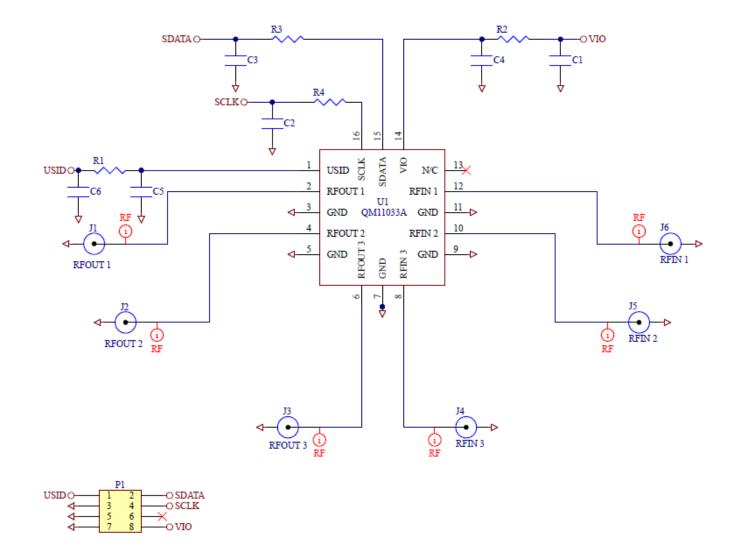
| loolotion |                | I                               | 617 to 060                   | 46       | dD       |
|-----------|----------------|---------------------------------|------------------------------|----------|----------|
| Isolation |                |                                 | 617 to 960<br>1427 to 2200   | 46       | dB       |
|           | olation        |                                 |                              | 40       | dB<br>dB |
|           |                | RFIN2 – RFIN1                   | 2300 to 2690                 | 38       | dB       |
|           |                |                                 | 3300 to 4200<br>4200 to 6000 | 37<br>38 | dB       |
|           |                |                                 | 617 to 960                   | 35       | dB       |
|           |                |                                 | 1427 to 2200                 | 29       | dB       |
|           |                | RFIN2 – RFIN3                   | 2300 to 2690                 | 29       | dB       |
|           |                | RFINZ = RFIN3                   | 3300 to 4200                 | 25       | dB       |
|           |                |                                 | 4200 to 6000                 | 25       | dB       |
|           |                |                                 | 617 to 960                   | 48       | dB       |
|           |                |                                 | 1427 to 2200                 | 43       | dB       |
|           |                | RFIN3 – RFOUT2                  | 2300 to 2690                 | 43       | dB       |
|           |                |                                 | 3300 to 4200                 | 42       | dB       |
|           |                |                                 | 4200 to 6000                 | 44       | dB       |
|           |                |                                 | 617 to 960                   | 38       | dB       |
|           |                |                                 | 1427 to 2200                 | 32       | dB       |
|           |                | RFIN3 – RFOUT3                  | 2300 to 2690                 | 30       | dB       |
|           |                |                                 | 3300 to 4200                 | 28       | dB       |
|           |                |                                 | 4200 to 6000                 | 28       | dB       |
| Isolation | RFIN3 – RFOUT1 | RFIN3 – RFIN1                   | 617 to 960                   | 60       | dB       |
|           |                |                                 | 1427 to 2200                 | 55       | dB       |
|           |                |                                 | 2300 to 2690                 | 55       | dB       |
|           |                |                                 | 3300 to 4200                 | 55       | dB       |
|           |                |                                 | 4200 to 6000                 | 49       | dB       |
|           |                | RFIN3 – RFIN2                   | 617 to 960                   | 45       | dB       |
|           |                |                                 | 1427 to 2200                 | 39       | dB       |
|           |                |                                 | 2300 to 2690                 | 37       | dB       |
|           |                |                                 | 3300 to 4200                 | 36       | dB       |
|           |                |                                 | 4200 to 6000                 | 36       | dB       |
|           |                |                                 | 617 to 960                   | 54       | dB       |
|           |                |                                 | 1427 to 2200                 | 49       | dB       |
|           |                | RFIN3 – RFOUT1                  | 2300 to 2690                 | 49       | dB       |
|           |                |                                 | 3300 to 4200                 | 50       | dB       |
|           |                |                                 | 4200 to 6000                 | 46       | dB       |
|           |                |                                 | 617 to 960                   | 38       | dB       |
|           |                |                                 | 1427 to 2200                 | 32       | dB       |
|           |                | RFIN3 – RFOUT3                  | 2300 to 2690                 | 30       | dB       |
|           |                |                                 | 3300 to 4200                 | 29       | dB       |
| Isolation |                |                                 | 4200 to 6000                 | 30       | dB       |
|           | RFIN3 – RFOUT2 |                                 | 617 to 960                   | 43       | dB       |
|           |                |                                 | 1427 to 2200                 | 37       | dB       |
|           |                | RFIN3 – RFIN1                   | 2300 to 2690                 | 35       | dB       |
|           |                | $1 \times 1000 = 1 \times 1001$ | 3300 to 4200                 | 32       | dB       |



|           | 1              | I              |              |    |    |
|-----------|----------------|----------------|--------------|----|----|
|           |                |                | 4200 to 6000 | 32 | dB |
|           |                | 617 to 960     | 42           | dB |    |
|           |                |                | 1427 to 2200 | 35 | dB |
|           |                | RFIN3 – RFIN2  | 2300 to 2690 | 33 | dB |
|           |                |                | 3300 to 4200 | 31 | dB |
|           |                |                | 4200 to 6000 | 31 | dB |
|           |                |                | 617 to 960   | 59 | dB |
|           |                |                | 1427 to 2200 | 53 | dB |
|           |                | RFIN3 – RFOUT1 | 2300 to 2690 | 52 | dB |
|           |                |                | 3300 to 4200 | 51 | dB |
| Isolation |                |                | 4200 to 6000 | 47 | dB |
|           |                | RFIN3 – RFOUT2 | 617 to 960   | 50 | dB |
|           |                |                | 1427 to 2200 | 44 | dB |
|           |                |                | 2300 to 2690 | 43 | dB |
|           |                |                | 3300 to 4200 | 43 | dB |
|           |                |                | 4200 to 6000 | 44 | dB |
|           | RFIN3 – RFOUT3 |                | 617 to 960   | 60 | dB |
|           |                |                | 1427 to 2200 | 54 | dB |
|           |                | RFIN3 – RFIN1  | 2300 to 2690 | 52 | dB |
|           |                |                | 3300 to 4200 | 49 | dB |
|           |                |                | 4200 to 6000 | 46 | dB |
|           |                |                | 617 to 960   | 41 | dB |
|           |                |                | 1427 to 2200 | 34 | dB |
|           |                | RFIN3 – RFIN2  | 2300 to 2690 | 32 | dB |
|           |                |                | 3300 to 4200 | 30 | dB |
|           |                |                | 4200 to 6000 | 28 | dB |

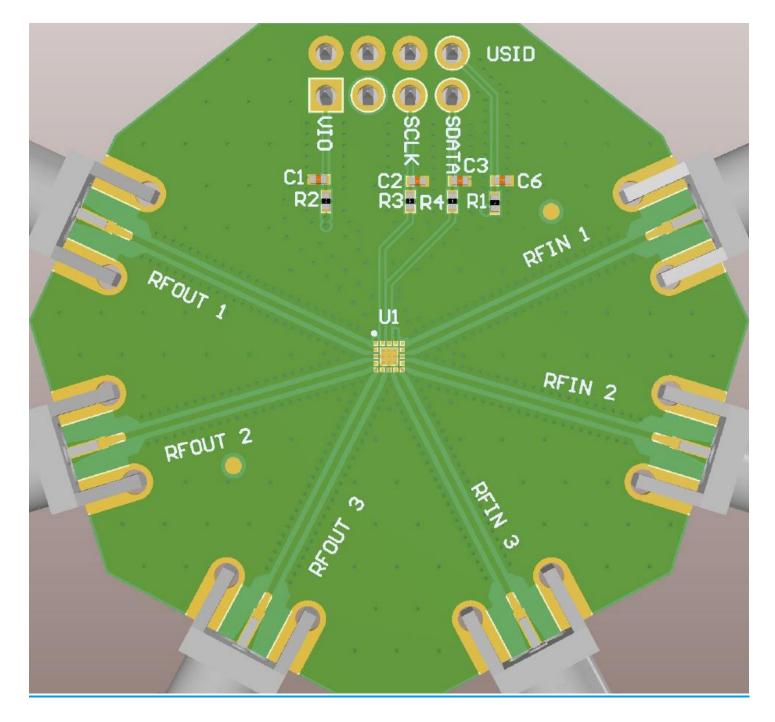
| PARAMETER         | CONDITIONS           | MIN | TYP. | MAX | UNITS |
|-------------------|----------------------|-----|------|-----|-------|
| VSWR              |                      |     |      |     |       |
|                   | 699 MHz to 960 MHz   |     | 1.15 |     | :1    |
|                   | 1427 MHz to 2200 MHz |     | 1.3  |     | :1    |
| Input/Output VSWR | 2300 MHz to 2690 MHz |     | 1.4  |     | :1    |
|                   | 3300 MHz to 4200 MHz |     | 1.6  |     | :1    |
|                   | 4200 MHz to 6000 MHz |     | 2.2  |     | :1    |

| PARAMETER                  | CONDITIONS                                   | MIN | TYP. | MAX | UNITS |
|----------------------------|----------------------------------------------|-----|------|-----|-------|
| Harmonics                  | VSWR 1:1                                     |     |      |     |       |
| 2 <sup>nd</sup> Harmonic   |                                              |     | -85  |     | dBm   |
| 3 <sup>rd</sup> Harmonic   | Freq = 617-960MHz; P <sub>IN</sub> = 26dBm   |     | -85  |     | dBm   |
| ≥ 4 <sup>th</sup> Harmonic |                                              |     | -120 |     | dBm   |
| 2 <sup>nd</sup> Harmonic   |                                              |     | -78  |     | dBm   |
| 3 <sup>rd</sup> Harmonic   | Freq = 1710-2170MHz; P <sub>IN</sub> = 26dBm |     | -78  |     | dBm   |
| ≥ 4 <sup>th</sup> Harmonic |                                              |     | -120 |     | dBm   |
| 2 <sup>nd</sup> Harmonic   |                                              |     | -78  |     | dBm   |
| 3 <sup>rd</sup> Harmonic   | Freq = 2300-2690MHz; P <sub>IN</sub> = 26dBm |     | -78  |     | dBm   |
| ≥ 4 <sup>th</sup> Harmonic |                                              |     | -120 |     | dBm   |
| 2 <sup>nd</sup> Harmonic   |                                              |     | -69  |     | dBm   |
| 3 <sup>rd</sup> Harmonic   | Freq = 3300-3800MHz; P <sub>IN</sub> = 26dBm |     | -72  |     | dBm   |
| ≥ 4 <sup>th</sup> Harmonic |                                              |     | -100 |     | dBm   |
| 2 <sup>nd</sup> Harmonic   |                                              |     | -70  |     | dBm   |
| 3 <sup>rd</sup> Harmonic   | Freq = 3800-4200MHz; P <sub>IN</sub> = 26dBm |     | -75  |     | dBm   |
| ≥ 4 <sup>th</sup> Harmonic |                                              |     | -100 |     | dBm   |
| 2 <sup>nd</sup> Harmonic   |                                              |     | -66  |     | dBm   |
| 3 <sup>rd</sup> Harmonic   | Freq = 4400-5000MHz; P <sub>IN</sub> = 26dBm |     | -74  |     | dBm   |
| ≥ 4 <sup>th</sup> Harmonic |                                              |     | -100 |     | dBm   |


| PARAMETER                             | CONDITIONS                                                    | MIN | TYP. | MAX | UNITS |
|---------------------------------------|---------------------------------------------------------------|-----|------|-----|-------|
| Standard IMD                          |                                                               |     |      |     |       |
| 2 <sup>nd</sup> Order intermodulation | CW P1 1950 MHz @20dBm,<br>CW P2 190 MHz, 4090MHz @ -15 dBm    |     | -120 |     | dBm   |
|                                       | CW P1 @ 835 MHz @20 dBm<br>CW P2 @ 45 MHz , 1715 MHz @-15 dBm |     | -128 |     | dBm   |
|                                       | CW P1 @ 2535 MHz @20 dBm<br>CW P2 @ 120 MHz @-15 dBm          |     | -123 |     | dBm   |
| 3 <sup>rd</sup> Order intermodulation | CW P1 1950 MHz @20 dBm,<br>CW P2 1760 MHz @ -15 dBm           |     | -123 |     | dBm   |
|                                       | CW P1 835 MHz @20 dBm,<br>CW P2 790 MHz @ -15 dBm             |     | -128 |     | dBm   |
|                                       | CW P1 @ 2535 MHz @20 dBm<br>CW P2 @ 2415 MHz @-15 dBm         |     | -121 |     | dBm   |



| PARAMETER                             | CONDITIONS               | MIN  | TYP. | MAX | UNITS |
|---------------------------------------|--------------------------|------|------|-----|-------|
| 2 Tx IMD                              |                          |      |      |     |       |
|                                       | CW P1 @ 2560 MHz @ 26dBm |      | -95  |     | dBm   |
|                                       | CW P2 @ 3500 MHz @ 26dBm |      |      |     | übili |
|                                       | CW P1 @ 1960 MHz @ 26dBm |      | -100 |     | dBm   |
|                                       | CW P2 @ 3500 MHz @ 26dBm |      | -100 |     | ubiii |
|                                       | CW P1 @ 890 MHz @ 26dBm  |      | -94  |     | dBm   |
| 2 <sup>nd</sup> Order intermodulation | CW P2 @ 3500 MHz @ 26dBm |      | -94  |     | ubili |
|                                       | CW P1 @ 1960 MHz @ 26dBm |      | 100  |     | dBm   |
|                                       | CW P2 @ 2600 MHz @ 26dBm | -100 |      |     | ubiii |
|                                       | CW P1 @ 890 MHz @ 26dBm  |      | -95  |     | dBm   |
|                                       | CW P2 @ 2600 MHz @ 26dBm |      | -95  |     | UDIII |
|                                       | CW P1 @ 890 MHz @ 26dBm  |      | -90  |     | dBm   |
|                                       | CW P2 @ 1970 MHz @ 26dBm |      | -90  |     | UDIII |
|                                       | CW P1 @ 3400 MHz @ 26dBm |      | -90  |     | dBm   |
|                                       | CW P2 @ 3500 MHz @ 26dBm |      | -90  |     | UDIII |
|                                       | CW P1 @ 2560 MHz @ 26dBm |      | -120 |     | dBm   |
| 3 <sup>rd</sup> Order intermodulation | CW P2 @ 3500 MHz @ 26dBm |      | -120 |     | UDIII |
|                                       | CW P1 @ 1960 MHz @ 26dBm |      | -110 |     | dBm   |
|                                       | CW P2 @ 2600 MHz @ 26dBm |      | -110 |     | UDIII |
|                                       | CW P1 @ 890 MHz @ 26dBm  |      | 100  |     | dBm   |
|                                       | CW P2 @ 1970 MHz @ 26dBm |      | -120 |     | uBm   |
|                                       |                          |      |      |     |       |

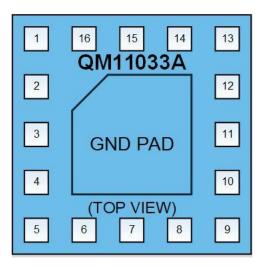



# **Application Circuit Schematic**





# **Evaluation Board Layout**






# **Pin Description**

| PIN | LABEL   | DESCRIPTION   |
|-----|---------|---------------|
| 1   | USID    | MIPI Control  |
| 2   | RFOUT 1 | RF Path       |
| 3   | GND     | Ground        |
| 4   | RFOUT 2 | RF Path       |
| 5   | GND     | Ground        |
| 6   | RFOUT 3 | RF Path       |
| 7   | GND     | Ground        |
| 8   | RFIN 3  | RF Path       |
| 9   | GND     | Ground        |
| 10  | RFIN 2  | RF Path       |
| 11  | GND     | Ground        |
| 12  | RFIN 1  | RF Path       |
| 13  | N/C     | No Connection |
| 14  | VIO     | MIPI Control  |
| 15  | SDATA   | MIPI Control  |
| 16  | SCLK    | MIPI Control  |

# **Pin Configuration**





# **Register Configuration**

| Regis  |             |                                                |       |     |                     |      |
|--------|-------------|------------------------------------------------|-------|-----|---------------------|------|
| Bit(s) | Field Name  | Description                                    | Reset | B/G | Trig                | R/WM |
| 7:6    | SPARE       | Reserved for future use                        | 0x0   | No  | 0 and 1 and/or<br>2 | R/WM |
|        |             | Input port 2 routing                           |       |     |                     |      |
|        |             | 000: connect to none                           |       |     |                     |      |
|        |             | 001: connect to OUT port 1                     |       |     |                     |      |
|        |             | 010: connect to OUT port 2                     |       |     |                     |      |
| 5:3    | Input Sol 2 | 011: connect to OUT port 3                     | 0×0   | No  | 0 and 1 and/or      | R/WM |
| 5.3    | Input_Sel_2 | 100: connect to OUT port 1,2                   | 0x0   | No  | 2                   |      |
|        |             | 101: connect to OUT port 2,3                   |       |     |                     |      |
|        |             | 110: connect to OUT port 1,3                   |       |     |                     |      |
|        |             | 111: connect to OUT port 1,2.3                 |       |     |                     |      |
|        |             | Input port 1 routing                           |       |     |                     |      |
|        |             | 000: connect to none                           |       |     |                     |      |
|        |             | 001: connect to OUT port 1                     |       |     |                     |      |
|        |             | 010: connect to OUT port 2                     |       |     |                     |      |
| 0.0    | Innut Cal 1 | 011: connect to OUT port 3                     | 0.40  | Nia | 0 and 1 and/or      |      |
| 2:0    | Input_Sel_1 | 100: connect to OUT port 1,2                   | 0x0   | No  | 2                   | R/WM |
|        |             | 101: connect to OUT port 2,3                   |       |     |                     |      |
|        |             | 110: connect to OUT port 1,3                   |       |     |                     |      |
|        |             | 111: connect to OUT port 1,2.3                 |       |     |                     |      |
|        |             | Note: See Truth Table for example of operation |       |     |                     |      |

#### Register 0x0000 - SW\_CTRL\_0

Note: See Truth Table for example of operation

#### Register 0x0001 - SW\_CTRL\_1

| Bit(s) | Field Name  | Description                    | Reset | B/G | Trig                | R/WM    |
|--------|-------------|--------------------------------|-------|-----|---------------------|---------|
| 7:3    | SPARE       | Reserved for future use        | 0x00  | No  | 0 and 1 and/or<br>2 | R/WM    |
|        |             | Input port 3 routing           |       |     |                     |         |
|        |             | 000: connect to none           |       |     |                     |         |
|        |             | 001: connect to OUT port 1     |       |     |                     |         |
|        |             | 010: connect to OUT port 2     |       |     |                     |         |
| 2:0    | Input Sol 2 | 011: connect to OUT port 3     | 0x0   | No  | 0 and 1 and/or      | R/WM    |
| 2.0    | Input_Sel_3 | 100: connect to OUT port 1,2   | UXU   | INO | 2                   | K/VVIVI |
|        |             | 101: connect to OUT port 2,3   |       |     |                     |         |
|        |             | 110: connect to OUT port 1,3   |       |     |                     |         |
|        |             | 111: connect to OUT port 1,2.3 |       |     |                     |         |
|        |             |                                |       |     |                     |         |

Note: See Truth Table for example of operation

|   | itegis |               |                                                                                                                               |       |     |      |     |
|---|--------|---------------|-------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|-----|
|   | Bit(s) | Field Name    | Description                                                                                                                   | Reset | B/G | Trig | R/W |
|   |        |               | Setting this bit initiates a software reset                                                                                   |       |     |      |     |
|   | 7      | UDR_RST       | Note: On software reset, this register and all User<br>Defined registers (UDRs) are reset. This bit will always<br>read as 0. | 0     | No  | No   | W   |
|   | 6      | CMD_FR_P_ERR  | Command Frame received with a parity error                                                                                    | 0     | No  | No   | R/W |
|   | 5      | CMD_LEN_ERR   | Command Sequence received with an incorrect length                                                                            | 0     | No  | No   | R/W |
|   | 4      | ADDR_FR_P_ERR | Address Frame received with a parity error                                                                                    | 0     | No  | No   | R/W |
|   | 3      | DATA_FR_P_ERR | Data Frame received with a parity error                                                                                       | 0     | No  | No   | R/W |
|   | 2      | RD_INVLD_ADDR | Read Command Sequence received with an invalid address                                                                        | 0     | No  | No   | R/W |
| _ | 1      | WR_INVLD_ADDR | Write Command Sequence received with an invalid address                                                                       | 0     | No  | No   | R/W |
| _ | 0      | BID_GID_ERR   | Read Command Sequence received with a BSID or<br>GSID                                                                         | 0     | No  | No   | R/W |
|   |        |               | Note: Reading this register resets this register.                                                                             |       |     |      |     |
|   |        |               |                                                                                                                               |       |     |      |     |

#### **Register 0x001A - RFFE\_STATUS**

#### Register 0x001B - GSID

| Bit(s) | Field Name | Description     | Reset | B/G | Trig | R/W |
|--------|------------|-----------------|-------|-----|------|-----|
| 7:4    | GSID0[3:0] | Group Slave ID0 | 0x0   | No  | No   | R/W |
| 3:0    | GSID1[3:0] | Group Slave ID1 | 0x0   | No  | No   | R/W |

#### **Register 0x001C - PM\_TRIG**

| Bit(s) | Field Name       | Description                                                                                                                                                             | Reset | B/G | Trig | R/W |
|--------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|-----|
| 7      | PWR_MODE[1]      | 0: Normal Operation<br>1: Low Power - Antenna in isolation                                                                                                              | 1     | B/G | No   | R/W |
| 6      | PWR_MODE[0]      | 0: ACTIVE<br>1: STARTUP - Reset all registers to default settings<br>Note: Setting PWR_MODE to STARTUP is identical to a<br>hardware reset initiated by the VIO signal. | 0     | B/G | No   | R/W |
| 5:3    | TriggerMask[2:0] | Setting bit TriggerMask[N] disables Trigger[N]<br>TriggerMask[N] updates <u>before</u> Trigger[N] is processed                                                          | 0b000 | No  | No   | R/W |



|     |              | Note: When Trigger[N] is disabled, writing to a register<br>associated with Trigger[N] sends data directly to that<br>register.<br>If a register is associated with multiple triggers, then<br><u>all associated triggers</u> must be disabled to allow direct<br>writes to the associated register.                                                                                                                                                                         |       |     |    |   |
|-----|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|----|---|
| 2:0 | Trigger[2:0] | Setting bit Trigger[N] loads Trigger[N]'s associated<br>registers<br>Note 1: When Trigger[N] is enabled, writing to a register<br>associated with Trigger[N] sends data to that register's<br>shadow. Setting the Trigger[N] bit loads data from<br>shadow. <u>All triggers</u> are processed immediately and<br>simultaneously and then cleared. Trigger[0], [1], and [2]<br>will always read as 0.<br>Note 2: : Use Trigger[0] along with Triggers[1] and/or<br>Trigger[2] | 0Ь000 | B/G | No | W |

#### Register 0x001D - PRODUCT\_ID

| Bit(s) | Field Name   | Description                                                                                                                                                                                                                                   | Reset | B/G | Trig | R/W |
|--------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|-----|
|        |              | Lower eight bits of Product Number                                                                                                                                                                                                            |       |     |      |     |
| 7:0    | PROD_ID[7:0] | Note: These are read-only registers. However, as part of<br>the special programming sequence for writing USID, a<br>write command sequence is performed on one or both<br>registers, but does not update them. See MIPI 6.6.2 for<br>details. | 0x29  | No  | No   | R   |

# Register 0x001E - MANUFACTURER\_ID

| Bit(s) | Field Name  | Description                                                                                                                                                                                                                                   | Reset | B/G | Trig | R/W |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|-----|
|        |             | Lower eight bits of MIPI Manufacturer ID                                                                                                                                                                                                      |       |     |      |     |
| 7:0    | MFG_ID[7:0] | Note: These are read-only registers. However, as part of<br>the special programming sequence for writing USID, a<br>write command sequence is performed on one or both<br>registers, but does not update them. See MIPI 6.6.2 for<br>details. | 0xC6  | No  | No   | R   |

#### **Register 0x001F - MAN\_USID**

| Bit(s) | Field Name   | Description                                                                                                                                                                                                            | Reset | B/G | Trig | R/W |
|--------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|-----|
|        |              | Upper four bits of MIPI Manufacturer ID                                                                                                                                                                                |       |     |      |     |
| 7:4    | MFG_ID[11:8] | Note: This is a read-only register. However, as part of the special programming sequence for writing USID, a write command sequence is performed on this register, but does not update it. See MIPI 6.6.2 for details. | 0x3   | No  | No   | R   |
| 3:0    | USID[3:0]    | Programmable Unique Slave ID                                                                                                                                                                                           | 0x6   | No  | No   | R/W |



#### The default value at reset is selected via pin SID0.

| SID0 | USID |
|------|------|
| 0    | 0x6  |
| 1    | 0x7  |

\_

Note: USID is only writeable using a special programming sequence. See MIPI 6.6.2 for details.

#### **Register 0x0020 – EXT\_PRODUCT\_ID**

| Bit(s) | Field Name    | Description                                                                                                                                                                                                                                   | Reset | B/G | Trig | R/W |
|--------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|-----|
|        |               | Upper eight bits of Product Number                                                                                                                                                                                                            |       |     |      |     |
| 7:0    | PROD_ID[15:8] | Note: These are read-only registers. However, as part of<br>the special programming sequence for writing USID, a<br>write command sequence is performed on one or both<br>registers, but does not update them. See MIPI 6.6.2 for<br>details. | 0x00  | No  | No   | R   |

| Bit(s) | Field Name                                   | Description                                                                                                                                                                         | Reset  | B/G | Trig | R/W |
|--------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|------|-----|
| 7:6    | MAJOR_REV[1:0]                               | Major Revisions - all layer                                                                                                                                                         | 0b00   | No  | No   | R   |
| 5:4    | MINOR_REV[1:0]                               | Minor Revisions - metal only                                                                                                                                                        | 0b00   | No  | No   | R   |
| 3:0    | MISC_REV[3:0] Misc Revisions - mask variants |                                                                                                                                                                                     | 0b0001 | No  | No   | R   |
|        |                                              | Note: The REVISION_ID register contains this product's revision number which is set by Qorvo according to manufacture date. The value may change throughout the product life cycle. |        |     |      |     |

#### Register 0x0022 - GSID0-1

| Bit(s) | Field Name | Description     | Reset | B/G | Trig | R/W |
|--------|------------|-----------------|-------|-----|------|-----|
| 7:4    | GSID0[3:0] | Group Slave ID0 | 0x0   | No  | No   | R/W |
| 3:0    | GSID1[3:0] | Group Slave ID1 | 0x0   | No  | No   | R/W |

#### **Register 0x0023 – UDR\_RST**

| Bit(s) | Field Name | Description                                                                                                                   | Reset | B/G | Trig | R/W |
|--------|------------|-------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|-----|
|        |            | Setting this bit initiates a software reset                                                                                   |       |     |      |     |
| 7      | UDR_RST    | Note: On software reset, this register and all User<br>Defined registers (UDRs) are reset. This bit will always<br>read as 0. | 0     | B/G | No   | W   |
| 6:0    | RESERVED   |                                                                                                                               | 0x00  | No  | No   | R   |



#### **Register 0x0024 - ERR\_SUM**

| Bit(s) | Field Name    | Description                                             | Reset | B/G | Trig | R/W |
|--------|---------------|---------------------------------------------------------|-------|-----|------|-----|
| 7      | SPARE         | Reserved for future use                                 | 0     | No  | No   | R/W |
| 6      | CMD_FR_P_ERR  | Command Frame received with a parity error              | 0     | No  | No   | R/W |
| 5      | CMD_LEN_ERR   | Command Sequence received with an incorrect length      | 0     | No  | No   | R/W |
| 4      | ADDR_FR_P_ERR | Address Frame received with a parity error              | 0     | No  | No   | R/W |
| 3      | DATA_FR_P_ERR | Data Frame received with a parity error                 | 0     | No  | No   | R/W |
| 2      | RD_INVLD_ADDR | Read Command Sequence received with an invalid address  | 0     | No  | No   | R/W |
| 1      | WR_INVLD_ADDR | Write Command Sequence received with an invalid address | 0     | No  | No   | R/W |
| 0      | BID_GID_ERR   | Read Command Sequence received with a BSID or<br>GSID   | 0     | No  | No   | R/W |
|        |               | Note: Reading this register resets this register.       |       |     |      |     |

#### **Register 0x002C – TEST\_PATT**

| Bit(s) | Field Name     | Description  | Reset | B/G | Trig | R/W |
|--------|----------------|--------------|-------|-----|------|-----|
| 7:0    | TEST_PATT[7:0] | Test Pattern | 0xD2  | No  | No   | R   |

#### Register 0x002D – EXT\_TRIG\_MASK

| Bit(s) | Field Name        | Description                                                                                                                                | Reset | B/G | Trig | R/W |
|--------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|-----|
|        |                   | Setting bit TriggerMask[N] disables Trigger[N]                                                                                             |       |     |      |     |
|        |                   | If using an Extended Write to update both TriggerMask<br>and Trigger, than TriggerMask[N] updates <u>before</u><br>Trigger[N] is processed |       |     |      |     |
| 7:0    | TriggerMask[10:3] |                                                                                                                                            | 0x00  | No  | No   | R/W |
|        |                   | Note: Extended Triggers do not cause state change.                                                                                         |       |     |      |     |

#### **Register 0x002E - EXT\_TRIG**

| Bit(s) | Field Name    | Description                                                       | Reset | B/G | Trig | R/W |
|--------|---------------|-------------------------------------------------------------------|-------|-----|------|-----|
| 7:0    | Trigger[10:3] | Setting bit Trigger[N] loads Trigger[N]'s associated<br>registers | 0x00  | B/G | No   | W   |



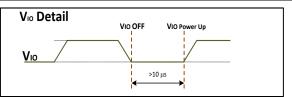
Note: Extended Triggers do not cause state change. Trigger[10 - 3] will always read as 0.

# QOCVO

# **Truth Table**

| sw_decoder_1 |          |                 |  |  |  |  |  |
|--------------|----------|-----------------|--|--|--|--|--|
| IN port      | OUT port | reg_00[2:0]     |  |  |  |  |  |
|              |          | in_decoder[2:0] |  |  |  |  |  |
| 1            | NONE     | 000             |  |  |  |  |  |
| 1            | 1        | 001             |  |  |  |  |  |
| 1            | 2        | 010             |  |  |  |  |  |
| 1            | 3        | 011             |  |  |  |  |  |
| 1            | 1,2      | 100             |  |  |  |  |  |
| 1            | 2,3      | 101             |  |  |  |  |  |
| 1            | 1,3      | 110             |  |  |  |  |  |
| 1            | 1,2,3    | 111             |  |  |  |  |  |

| sw_decoder_2 |          |                 |  |  |  |  |  |
|--------------|----------|-----------------|--|--|--|--|--|
| IN port      | OUT port | reg_00[5:3]     |  |  |  |  |  |
|              |          | in_decoder[2:0] |  |  |  |  |  |
| 2            | NONE     | 000             |  |  |  |  |  |
| 2            | 1        | 001             |  |  |  |  |  |
| 2            | 2        | 010             |  |  |  |  |  |
| 2            | 3        | 011             |  |  |  |  |  |
| 2            | 1,2      | 100             |  |  |  |  |  |
| 2            | 2,3      | 101             |  |  |  |  |  |
| 2            | 1,3      | 110             |  |  |  |  |  |
| 2            | 1,2,3    | 111             |  |  |  |  |  |


| sw_decoder_3 |          |                 |  |  |  |  |  |
|--------------|----------|-----------------|--|--|--|--|--|
| IN port      | OUT port | reg_01[2:0]     |  |  |  |  |  |
|              |          | in_decoder[2:0] |  |  |  |  |  |
| 3            | NONE     | 000             |  |  |  |  |  |
| 3            | 1        | 001             |  |  |  |  |  |
| 3            | 2        | 010             |  |  |  |  |  |
| 3            | 3        | 011             |  |  |  |  |  |
| 3            | 1,2      | 100             |  |  |  |  |  |
| 3            | 2,3      | 101             |  |  |  |  |  |
| 3            | 1,3      | 110             |  |  |  |  |  |
| 3            | 1,2,3    | 111             |  |  |  |  |  |



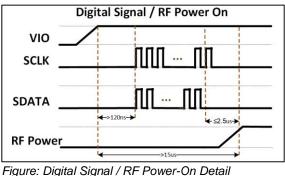
#### Power On and Off Sequence

It is very important that the user adheres to the correct timing sequences in order to avoid damaging the device. Figures are NOT drawn to scale.

 Once VIO is powered down to 0V, wait a minimum of 10 µs to reapply power to VIO. (see Figure: Digital Supply Detail)






- VIO must be applied for a minimum of 120 ns before sending SDATA/SCLK to ensure correct data transmission. (see Figure: RF Power-Up Detail)
- VIO must be applied for a minimum of 15 μs before applying RF power. (see Figure: Digital Signal / RF Power-On Detail)

5. RF power must not be applied during switching

mode. (see Figure: Switch Event Timing)

events. To ensure this, remove RF power before completing a register write that will change the switch

 Wait a minimum of 5 μs after RFFE bus is idle to apply an RF signal. (see Figure: RF Power-Up Detail)



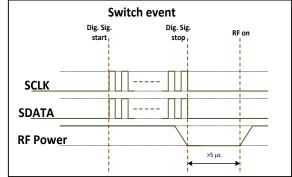
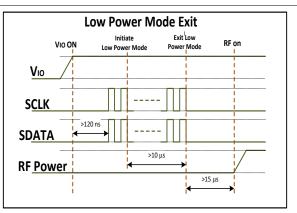
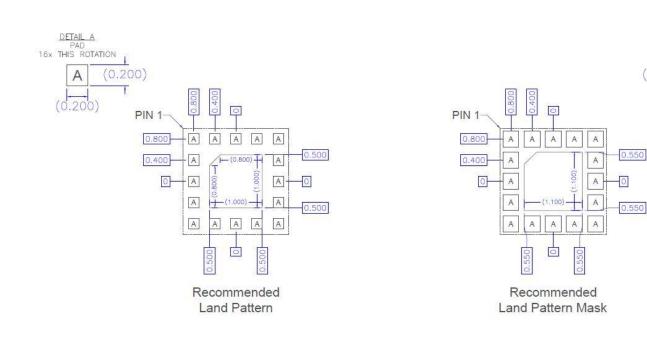



Figure: Switch Event Timing

 If "Low Power Mode" is utilized, there must be a delay of 10 µs before exiting "Low Power Mode". (see Figure: Low-Power Mode Exit Timimg)





Figure: Low-Power Mode Exit Timing



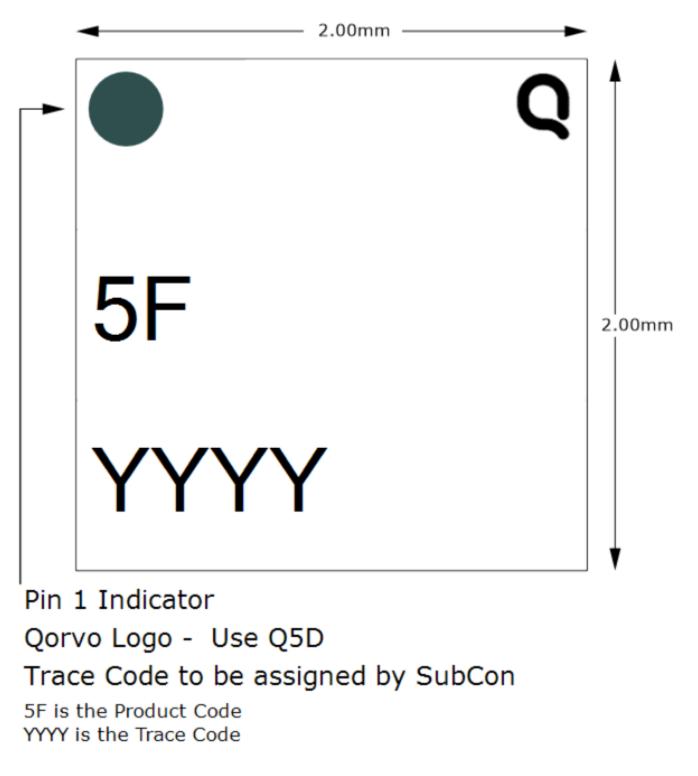
# **Mechanical Drawing**



#### PCB Drawing Requirements

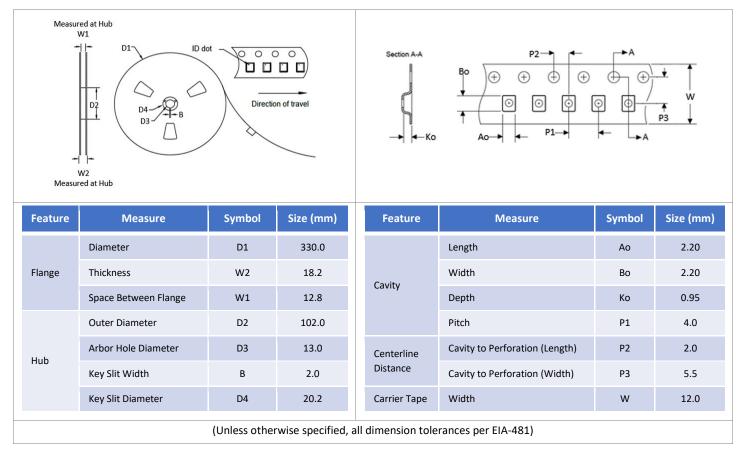


DETAIL A PAD 16x THIS ROTATION


A

(0.300

(0.300)




# **Branding Diagram**





# **Tape and Reel Information**





# **Handling Precautions**

| Parameter                        | Rating   | Standard              |                      |  |
|----------------------------------|----------|-----------------------|----------------------|--|
| ESD – Human Body Model (HBM)     | Class 2  | ANSI/ESD/JEDEC JS-001 | Caution!             |  |
| ESD – Charged Device Model (CDM) | Class C3 | ANSI/ESD/JEDEC JS-002 | ESD sensitive device |  |
| MSL – Moisture Sensitivity Level | Level 3  | IPC/JEDEC J-STD-020   |                      |  |

#### **Solderability**

Compatible with both lead-free (260 °C INFIN TYP reflow temperature) and tin/lead (245 °C INFIN TYP reflow temperature) soldering processes.

Package lead plating: Electrolytic plated Au over Ni

# **RoHS Compliance**

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C15H12Br402) Free
- SVHC Free



## **Revision History**

| Revision | Description                                                                                 |
|----------|---------------------------------------------------------------------------------------------|
| Н        | Initial Production Release                                                                  |
| I        | Updated Switching Time Description                                                          |
| J        | Updated data with limits and extreme data                                                   |
| К        | Updated Harmonics data                                                                      |
| L        | Added Input to Input Isolation, Added Harmonics by path on focus areas, Added Matching Data |
| М        | Updated Matched data for RFOUT1 paths                                                       |
| N        | Updated Register Map Trigger usage                                                          |
| 0        | Updated Timing Diagram and limits                                                           |
| Р        | Updated Switching Speed with Multipath Info                                                 |

#### **Contact Information**

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: customer.support@qorvo.com

#### **Important Notice**

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.