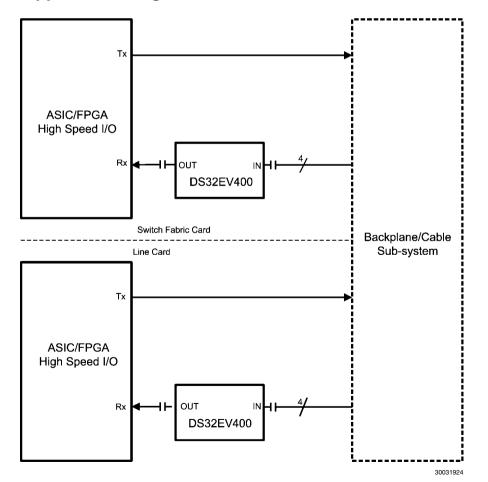
National Semiconductor is now part of Texas Instruments.

Search http://www.ti.com/ for the latest technical information and details on our current products and services.

DS32EV400 Programmable Quad Equalizer

General Description

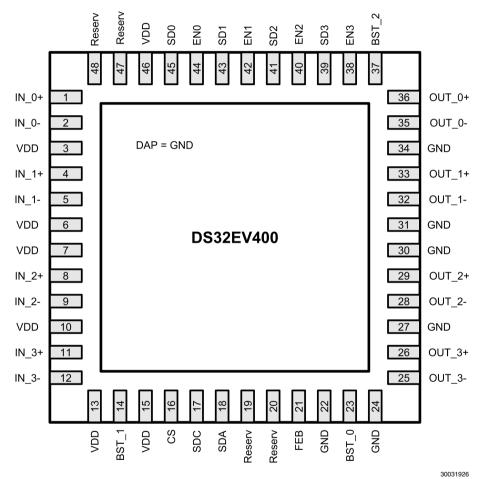

The DS32EV400 programmable quad equalizer provides compensation for transmission medium losses and reduces the medium-induced deterministic jitter for four NRZ data channels. The DS32EV400 is optimized for operation up to 3.2 Gbps for both cables and FR4 traces. Each equalizer channel has eight levels of input equalization that can be programmed by three control pins, or individually through a Serial Management Bus (SMBus) interface.

The equalizer supports both AC and DC-coupled data paths for long run length data patterns such as PRBS-31, and balanced codes such as 8b/10b. The device uses differential current-mode logic (CML) inputs and outputs, and is available in a 7 mm x 7 mm 48-pin leadless LLP package. Power is supplied from either a 2.5V or 3.3V supply.

Features

- Equalizes up to 14 dB loss at 3.2 Gbps
- 8 levels of programmable equalization
- Settable through control pins or SMBus interface
- Operates up to 3.2 Gbps with 40" FR4 traces
- 0.12 UI residual deterministic jitter at 3.2 Gbps with 40" FR4 traces
- Single 2.5V or 3.3V power supply
- Signal Detect for individual channels
- Standby mode for individual channels
- Supports AC or DC-Coupling with wide input commonmode
- Low power consumption: 375 mW Typ at 2.5V
- Small 7 mm x 7 mm 48-pin LLP package
- 9 kV HBM ESD
- -40 to 85°C operating temperature range

Simplified Application Diagram


Pin Descriptions

Pin Name	Pin Number	I/O, Type	Description
HIGH SPEED	DIFFERENTI	AL I/O	
IN_0+	1	I, CML	Inverting and non-inverting CML differential inputs to the equalizer. An on-chip 100Ω
IN_0-	2	, -	terminating resistor is connected between IN_0+ and IN_0
IN_1+	4	I, CML	Inverting and non-inverting CML differential inputs to the equalizer. An on-chip 100Ω
IN_1-	5		terminating resistor is connected between IN_1+ and IN_1
IN_2+	8	I, CML	Inverting and non-inverting CML differential inputs to the equalizer. An on-chip 100Ω
IN_2-	9		terminating resistor is connected between IN_2+ and IN_2
IN_3+	11	I, CML	Inverting and non-inverting CML differential inputs to the equalizer. An on-chip 100Ω
IN_3-	12		terminating resistor is connected between IN_3+ and IN_3
OUT_0+	36	O, CML	Inverting and non-inverting CML differential outputs from the equalizer. An on-chip 50Ω
OUT_0-	35		terminating resistor connects OUT_0+ to V _{DD} and OUT_0- to V _{DD} .
OUT_1+	33	O, CML	Inverting and non-inverting CML differential outputs from the equalizer. An on-chip 50Ω
OUT_1-	32		terminating resistor connects OUT_1+ to V _{DD} and OUT_1- to V _{DD} .
OUT_2+	29	O, CML	Inverting and non-inverting CML differential outputs from the equalizer. An on-chip 50Ω
OUT_2-	28		terminating resistor connects OUT_2+ to V _{DD} and OUT_2- to V _{DD} .
OUT_3+	26	O, CML	Inverting and non-inverting CML differential outputs from the equalizer. An on-chip 50Ω
OUT_3-	25		terminating resistor connects OUT_3+ to V _{DD} and OUT_3- to V _{DD} .
EQUALIZATI	ON CONTRO	L	
BST_2	37	I, CMOS	BST_2, BST_1, and BST_0 select the equalizer strength for EQ channel 1. BST_2 is
BST_1	14		internally pulled high. BST_1 and BST_0 are internally pulled low.
BST_0	23		
DEVICE CON	ITROL		
EN0	44	I, CMOS	Enable Equalizer Channel 0 input. When held High, normal operation is selected. When
			held Low, standby mode is selected. EN is internally pulled High.
EN1	42	I, CMOS	Enable Equalizer Channel 1 input. When held High, normal operation is selected. When
			held Low, standby mode is selected. EN is internally pulled High.
EN2	40	I, CMOS	Enable Equalizer Channel 2 input. When held High, normal operation is selected. When
ENIO	20	I CMOS	held Low, standby mode is selected. EN is internally pulled High.
EN3	38	I, CMOS	Enable Equalizer Channel 3 input. When held High, normal operation is selected. When held Low, standby mode is selected. EN is internally pulled High.
FEB	21	I, CMOS	Force External Boost. When held high, the equalizer boost setting is controlled by BST_[2:0]
'	21	1, 010100	pins. When held low, the equalizer boost setting is controlled by SMBus (see Table 1) control
			pins. FEB is internally pulled High.
SD0	45	O, CMOS	Equalizer Ch0 Signal Detect Output. Produces a High when signal is detected.
SD1	43	O, CMOS	Equalizer Ch1 Signal Detect Output. Produces a High when signal is detected.
SD2	41	O, CMOS	Equalizer Ch2 Signal Detect Output. Produces a High when signal is detected.
SD3	39	O, CMOS	Equalizer Ch3 Signal Detect Output. Produces a High when signal is detected.
POWER		l .	
$\overline{V_{DD}}$	3, 6, 7,	Power	$V_{DD} = 2.5V \pm 5\%$ or $3.3V \pm 10\%$. V_{DD} pins should be tied to V_{DD} plane through low inductance
	10, 13,		path. A 0.01µF bypass capacitor should be connected between each V _{DD} pin to GND planes.
	15, 46		
GND	22, 24,	Power	Ground reference. GND should be tied to a solid ground plane through a low impedance
	27, 30,		path.
	31, 34		
Exposed	PAD	Power	Ground reference. The exposed pad at the center of the package must be connected to
Pad			ground plane of the board.

Pin Name	Pin Number	I/O, Type	Description						
SERIAL MANAGEMENT BUS (SMBus) INTERFACE CONTROL PINS									
SDA	18	I, CMOS	Data input. Internally pulled high.						
SDC	17	I, CMOS	Clock input. Internally pulled high.						
cs	16	I, CMOS	Chip select. When held high, access to the equalizer SMBus registers are enabled. When held low, access to the equalizer SMBus registers are disabled. CS is internally gated with SDC.						
Other									
Reserv	19, 20		Reserved. Do not connect.						
	47,48								

Note: I = Input O = Output

Connection Diagram

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V_{DD}) -0.5V to +4.0V CMOS Input Voltage -0.5V + 4.0V CMOS Output Voltage -0.5V to 4.0V CML Input/Output Voltage -0.5V to 4.0V

Junction temperature $+150^{\circ}\text{C}$ Storage temperature -65°C to $+150^{\circ}\text{C}$ Lead temperature (Soldering, 4 $+260^{\circ}\text{C}$

Seconds)

ESD rating

HBM, 1.5 kΩ, 100 pF >9 kV EIAJ, 0Ω, 200pF >250V

Thermal Resistance

 θ_{JA} , no airflow 30°C/W

Recommended Operating Conditions

	Min	Тур	Max	Units	
Supply Voltage					
V _{DD2.5} to GND	2.375	2.5	2.625	V	
V _{DD3.3} to GND	3.0	3.3	3.6	V	
Ambient Temperature	-40	25	+85	°C	

Electrical Characteristics

Over recommended operating supply and temperature ranges with default register settings unless other specified.

Symbol	Parameter Conditions		Min	Тур	Max	Units	
POWER							
Р	Power Supply Consumption	Device Enabled, V _{DD3.3}		490	700	mW	
		EN0 — EN3 = Low, V _{DD3.3}			100	mW	
Р	Power Supply Consumption	Device Enabled, V _{DD2.5}		360	490	mW	
		EN0 — EN3 = Low, V _{DD2.5}		30			
N	Supply Noise Tolerance	50 Hz — 100 Hz		100		mV _{P-F}	
		100 Hz — 10 MHz		40		mV _{P-F}	
		10 MHz — 1.6 GHz		10		mV _{P-F}	
LVTTL DC S	PECIFICATIONS				•	•	
V _{IH}	High Level Input Voltage	V _{DD3.3}	2.0		V _{DD}	V	
		V _{DD2.5}	1.6		V _{DD}	V	
V _{IL}	Low Level Input Voltage		-0.3		0.8	V	
V _{OH}	High Level Output Voltage	$I_{OH} = -3mA, V_{DD3.3}$	2.4			V	
		$I_{OH} = -3mA$, $V_{DD2.5}$	2.0				
V _{OL}	Low Level Output Voltage	I _{OL} = 3mA			0.4	V	
I _{IN}	Input Leakage Current	$V_{IN} = V_{DD}$			+15	μΑ	
		V _{IN} = GND	-15			μΑ	
I _{IN-P}	Input Leakage Current with	V _{IN} = V _{DD} , with internal pull-down			+120	μA	
114-1	Internal Pull-Down/Up Resistors	resistors				'	
		V _{IN} = GND, with internal pull-up	-20			μΑ	
		resistors					
SIGNAL DET	ECT					_	
SDH	Signal Detect High	Default input signal level to assert SD pin, 3.2 Gbps		75		mV _{p-p}	
SDI	Signal Detect Low	Default input signal level to de-		35		mV _{p-p}	
		assert SD, 3.2Gbps					
CML RECEIV	/ER INPUTS (IN_n+, IN_n-)						
V _{INTRE}	Input Threshold Voltage	Differential measurement at point					
		В		120		mV _{P-F}	
		(Figure 1)					
V_{IN}	Input Voltage Swing	AC-Coupled or DC-Coupled					
		Requirement Differential	400		1600	mV _{P-F}	
		measurement at point A					
		(Figure 1)					

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V_{DDTX}	Suplly Voltage of Transmitter to EQ	DC-Coupled Requirement (Note 9)	1.6		V _{DD}	V
V _{ICMDC}	Input Common Mode Voltage	DC-Coupled Requirement Differential measurement at point A (Figure 1) (Note 7)	V _{DDTX} – 0.8		V _{DDTX} – 0.2	V
R _{LI}	Differential Input Return Loss	100MHz – 1.6GHz, with fixture's effect de-embedded		10		dB
R _{IN}	Input Resistance	Differential across IN+ and IN-	85	100	115	Ω
CML OUTPU	TS (OUT_n+, OUT_n-)					
V _o	Output Voltage Swing	Differential measurement with OUT+ and OUT- terminated by 50Ω to GND AC-Coupled (Figure 2)	500		725	mV _{P-P}
V _{OCM}	Output Common Mode Voltage	Single-ended measurement DC-Coupled with 50Ω terminations (Note 7)	V _{DD} - 0.2		V _{DD} - 0.1	V
t _R , t _F	Transition Time	20% to 80% of differential output voltage, measured within 1" from output pins. (Figure 2) (Note 7)	20		60	ps
R _o	Output Resistance	Single ended to V _{DD}	42	50	58	Ω
R _{LO}	Differential Output Return Loss	100 MHz – 1.6 GHz, with fixture's effect de-embedded. IN+ = static high.		10		dB
t _{PLHD}	Differential Low to High Propagation Delay	Propagation delay measurement at 50% VO between input to		240		ps
PHLD	Differential High to Low Propagation Delay	output, 100 Mbps (Figure 3) (Note 7)		240		ps
t _{ccsk}	Inter Pair Channel to Channel Skew	Difference in 50% crossing between channels		7		ps
EQUALIZATI	ON					
DJ1	Residual Deterministic Jitter at 3.2 Gbps	40" of 6 mil microstrip FR4, EQ Setting 0x07, PRBS-7 (2 ⁷ -1) pattern (Note 5, 6)		0.12	0.20	UI _{P-P}
DJ2	Residual Deterministic Jitter at 2.5 Gbps	40" of 6 mil microstrip FR4, EQ Setting 0x07, PRBS-7 (2 ⁷ -1) pattern (Note 5, 6)		0.1	0.16	UI _{P-P}
DJ3	Residual Deterministic Jitter at 1 Gbps	40" of 6 mil microstrip FR4, EQ Setting 0x07, PRBS-7 (2 ⁷ -1) pattern (Note 5, 6)		0.05		UI _{P-P}
RJ	Random Jitter	(Note 7, 8)		0.5		psrms

5

Symbol	Parameter	Conditions	Min	Тур	Max	Units
SIGNAL DET	ECT and ENABLE TIMING					
t _{ZISD}	TRI-STATE to Input SD Delay	Propagation delay measurement		35		ns
t _{IZSD}	Input to TRI-STATE SD Delay	at V_{IN} to SD output, V_{IN} = 800 m V_{P-P} , 100 Mbps, 40" of 6 mil microstrip FR4 (Figure 1, 4) (Note 7)		400		ns
t _{OZOED}	EN TRI-STATE to Output Delay	Propagation delay measurement		150		ns
t _{ZOED}	EN output to TRI-STATE Delay	at EN input to V_O , $V_{IN} = 800 \text{ mV}_{P}$ $_P$, 100 Mbps, 40" of 6 mil microstrip FR4 (Figure 1, 4) (Note 7)		5		ns

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. Absolute Maximum Numbers are guaranteed for a junction temperature range of -40°C to +125°C. Models are validated to Maximum Operating Voltages only.

Note 2: Typical values represent most likely parametric norms at V_{DD} = 3.3V, T_A = 25°C, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed.

Note 3: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

Note 4: Allowed supply noise (mV $_{\text{P-P}}$ sine wave) under typical conditions.

Note 5: Specification is guaranteed by characterization and is not tested in production.

Note 6: Deterministic jitter is measured at the differential outputs (point C of Figure 1), minus the deterministic jitter before the test channel (point A of Figure 1). Random jitter is removed through the use of averaging or similar means.

Note 7: Measured with clock like {11111 00000} pattern.

Note 8: Random jitter contributed by the equalizer is defined as sqrt $(J_{OUT}^2 - J_{IN}^2)$. J_{OUT} is the random jitter at the equalizer outputs in ps-rms, see point C of Figure 1; J_{IN} is the random jitter at the input of the equalizer in ps-rms, see point B of Figure 1.

Electrical Characteristics — Serial Management Bus Interface

Over recommended operating supply and temperature ranges unless other specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
SERIAL BUS	INTERFACE DC SPECIFICATIONS	3	•			
V _{IL}	Data, Clock Input Low Voltage				0.8	V
V _{IH}	Data, Clock Input High Voltage		2.1		V _{DD}	V
I _{PULLUP}	Current through pull-up resistor or current source		4			mA
$\overline{V_{DD}}$	Nominal Bus Voltage		2.375		3.6	V
I _{LEAK-Bus}	Input Leakage per bus segment	(Note 9)	-200		+200	μΑ
I _{LEAK-Pin}	Input Leakage per device pin			-15		μΑ
Cı	Capacitance for SDA and SDC	(Note 9, 10)			10	pF
R _{TERM}	Termination Resistance	V _{DD3.3} (Note 9, 10, 11)		2000		Ω
		V _{DD2.5} (Note 9, 10, 11)		1000		Ω
SERIAL BUS	INTERFACE TIMING SPECIFICATI	ONS	•			
FSMB	Bus Operating Frequency	(Note 12)	10		100	kHz
TBUF	Bus Free Time Between Stop and Start Condition		4.7			μs
THD:STA	Hold Time After (Repeated) Start Condition. After this period, the first clock is generated.	At I _{PULLUP} , Max	4.0			μs
TSU:STA	Repeated Start Condition Setup Time		4.7			μs
TSU:STO	Stop Condition Setup Time		4.0			μs
THD:DAT	Data Hold Time		300			ns
TSU:DAT	Data Setup Time		250			ns
T _{TIMEOUT}	Detect Clock Low Timeout	(Note 12)	25		35	ms
T _{LOW}	Clock Low Period		4.7			μs
T _{HIGH}	Clock High Period	(Note 12)	4.0		50	μs
T _{LOW} :SEXT	Cumulative Clock Low Extend Time (Slave Device)	(Note 12)			2	ms
t _F	Clock/Data Fall Time	(Note 12)			300	ns
t _R	Clock/Data Rise Time	(Note 12)			1000	ns
t _{POR}	Time in which a device must be operational after power-on reset	(Note 12)			500	ms

Note 9: Recommended value. Parameter not tested.

Note 10: Recommended maximum capacitance load per bus segment is 400pF.

 $\textbf{Note 11:} \ \textbf{Maximum termination voltage should be identical to the device supply voltage}.$

Note 12: Compliant to SMBus 2.0 physical layer specification. See System Management Bus (SMBus) Specification Version 2.0, section 3.1.1 SMBus common AC specifications for details.

Serial Management Bus (SMBus) Configuration Registers

The Serial Management Bus interface is compatible to SM-Bus 2.0 physical layer specification, except for bus termination voltages. Holding the CS pin High enables the SMBus

port allowing access to the SMBus registers. The configuration registers can be read and written using SMBus through the SDA and SDC pins. In the STANDBY state, the Serial Management Bus remains active. Please see for more information.

TABLE 1. SMBus Register Address

Name	Address	Default	Туре	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Status	0x00	0x00	RO	ID Revision	n			SD3	SD2	SD1	SD0
Status	0x01	0x00	RO	EN1	EN1 Boost 1			EN0	Boost 0	•	3
Status	0x02	0x00	RO	EN3	N3 Boost 3			EN2	Boost 2		
Enable/ Boost (BST_1, BST_0)	0x03	0x44	RW	EN1 1:Enable 0:Disable	Boost Co (BC for C 000 (Min 001 010 011 100 (Defa 101 110 111 (Max	H1) Boost) ault) Boost)		EN0 1:Enable 0:Disable	Boost C (BC for 000 (Min 001 010 011 100 (De 101 110 111 (Ma	CH2) n Boost) fault)	
Enable/ Boost (BST_3, BST_2)	0x04	0x44	RW	EN3 1:Enable 0:Disable	Boost Co (BC for C 000 (Min 001 010 011 100 (Defa 101 110 111 (Max	H3) Boost) ault)		EN2 1:Enable 0:Disable	Boost C (BC for 000 (Min 001 010 011 100 (De 101 110 111 (Ma	CH2) n Boost)	
Signal Detect	0x05	0x00	RW	SD3 ON T Select 00: 70 mV 01: 55 mV 10: 90 mV 11: 75 mV	hreshold (Default)	SD2 ON Select	' (Default) '	SD1 ON Thro Select 00: 70 mV (D 01: 55 mV 10: 90 mV 11: 75 mV	eshold	SD0 ON Select	V
Signal Detect	0x06	0x00	RW	SD3 OFF Threshold 00: 40 mV 01: 30 mV 10: 55 mV 11: 45 mV	Select (Default)	SD2 OFF Select	Threshold ((Default)	SD1 OFF Th Select 00: 40 mV (D 01: 30 mV 10: 55 mV 11: 45 mV		SD0 OFI Select	Threshold V (Default) V V V
SMBus Control	0x07	0x00	RW	Reserved							SMBus Enable 0: Disable 1: Enable
Output Level	0x08	0x78	RW	Reserved				Output Level 00: 400 mV _P 01: 540 mV _P 10: 620 mV _P (Default) 11: 760 mV _P	-P -P -P	Reserve	d

Note: RO = Read Only, RW = Read/Write

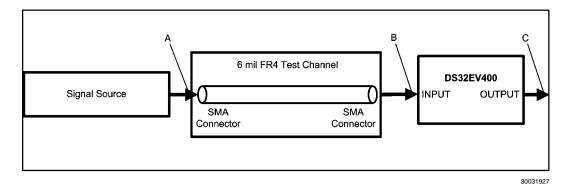


FIGURE 1. Test Setup Diagram

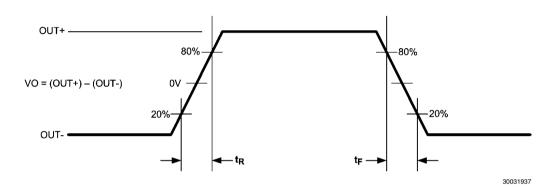


FIGURE 2. CML Output Transition Times

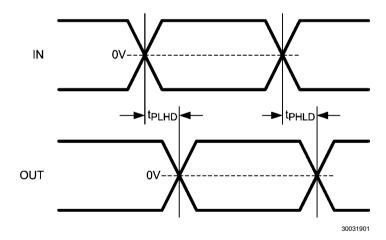


FIGURE 3. Propagation Delay Timing Diagram

9

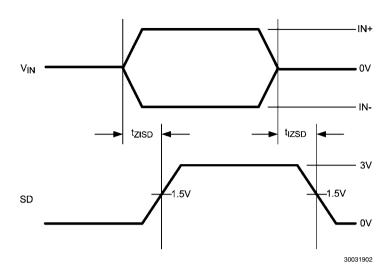


FIGURE 4. Signal Detect (SD) Delay Timing Diagram

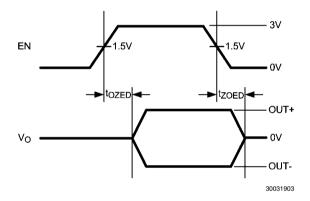


FIGURE 5. Enable (EN) Delay Timing Diagram

DS32EV400 Applications Information

The DS32EV400 is a programmable quad equalizer optimized for operation up to 3.2 Gbps for backplane and cable applications.

DATA CHANNELS

The DS32EV400 provides four data channels. Each data channel consists of an equalizer stage, a limiting amplifier, a DC offset correction block, and a CML driver as shown in Figure 6

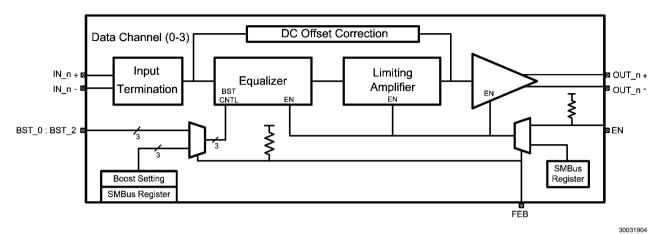


FIGURE 6. Simplified Block Diagram

11

EQUALIZER BOOST CONTROL

Each data channel supports eight programmable levels of equalization boost. The state of the FEB pin determines how the boost settings are controlled. If the FEB pin is held High, then the equalizer boost setting is controlled by the Boost Set pins (BST_[2:0]) in accordance with Table 2. If this programming method is chosen, then the boost setting selected on the Boost Set pins is applied to all channels. When the FEB pin is held Low, the equalizer boost level is controlled through the SMBus. This programming method is accessed via the appropriate SMBus registers (see Table 1). Using this approach, equalizer boost settings can be programmed for each channel individually. FEB is internally pulled High (default setting); therefore if left unconnected, the boost settings are controlled by the Boost Set pins (BST [0:21). The eight levels of boost settings enables the DS32EV400 to address a wide range of media loss and data rates.

TABLE 2. EQ Boost Control Table

6 mil microstrip FR4 trace length (in)	24 AWG Twin-AX cable length (m)	Channel Loss at 1.6 GHz (dB)	[BST_2, BST_1,BST_ 0]
0	0	0	000
5	2	3	0 0 1
10	3	6	010
15	4	7	0 1 1
20	5	8	1 0 0 (Default)
25	6	10	101
30	7	12	110
40	10	14	111

DEVICE STATE AND ENABLE CONTROL

The DS32EV400 has an Enable feature on each data channel which provides the ability to control device power consumption. This feature can be controlled either via each Enable Pin (ENn Pin) or via the Enable Control Bit which is accessed through the SMBus port (see Table 1 and Table 3). If the Enable is activated, the corresponding data channel is placed in the ACTIVE state and all device blocks function as described. The DS32EV400 can also be placed in STANDBY mode to save power. In this mode only the control interface including the SMBus port, as well as the signal detection circuit remain active.

TABLE 3. Controlling Device State

Register 07[0] (SMBus)	EN Pin (CMOS)	Channel 0: Register 03[3] Channel 1: Register 03[7] Channel 2: Register 04[3] Channel 3: Register 04[7] (EN Control) (SMBus)	Device State
0 : Disable	1	X	ACTIVE
0 : Disable	0	Х	STANDBY
1 : Enable	Х	0	ACTIVE
1 : Enable	Х	1	STANDBY

SIGNAL DETECT

The DS32EV400 features a signal detect circuit on each data channel. The status of the signal of each channel can be determined by either reading the Signal Detect bit (SDn) in the SMBus registers (see Table 1) or by the state of each SDn pin. A logic High indicates the presence of a signal that has exceeded a specified maximum threshold value (called SD_ON). A logic Low means that the input signal has fallen below a minimum threshold value (called SD_OFF). These values are programmed via the SMBus (Table 1). If not programmed via the SMBus, the minimum and maximum thresholds take on the default values for the minimum and maximum values as indicated in Table 4. The Signal Detect threshold values can be changed through the SMBus. All threshold values specified are DC peak-to-peak differential signals (positive signal minus negative signal) at the input of the device.

TABLE 4. Signal Detect Threshold Values

Channel 0: Bit 1 Channel 1: Bit 3 Channel2: Bit 5 Channel 3: Bit 7	Channel 0: Bit 0 Channel 1: Bit 2 Channel2: Bit 4 Channel 3: Bit 6	Minimum Threshold Register 06 (mV)	Maximum Threshold Register 05 (mV)
0	0	40 (Default)	70 (Default)
0	1	30	55
1	0	55	90
1	1	45	75

OUTPUT LEVEL CONTROL

The output amplitude of the CML drivers for each channel can be controlled via the SMBus (see Table 1). The default output level is 650 mVp-p. The following Table presents the output level values supported:

TABLE 5. Output Level Control Settings

All Channels: Bit 3	All Channels: Bit 2	Output Level Register 08 (mV _{P-P})
0	0	400
0	1	540
1	0	620 (Default)
1	1	760

AUTOMATIC ENABLE FEATURE

It may be desirable to place unused channels in power-saving Standby mode. This can be accomplished by connecting the Signal detect (SDn) pin to the Enable (ENn) pin for each channel (See Figure 7). In order for this option to function properly, the FEB pin must be either tied High or not connected (the FEB pin is internally pulled High by default). If an input signal swing applied to a data channel is above the maximum level specified in the threshold register via the SMBus, then the SDn pin is asserted High. If the SDn pin is connected to the ENn pin, this will enable the equalizer, limiting amplifier, and output buffer on the data channels (provided that the FEB pin is High); thus the DS32EV400 will automatically enter the ACTIVE state. If the input signal swing falls below the minimum level specified in the threshold register, then the SDn pin will be asserted Low, causing the aforementioned blocks to be placed in the STANDBY state.

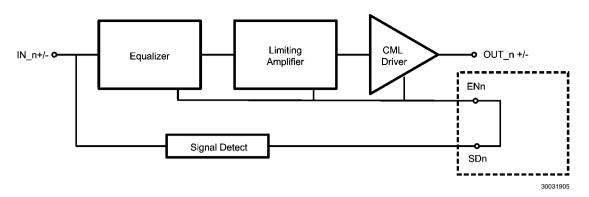


FIGURE 7. Automatic Enable Configuration

UNUSED EQUALIZER CHANNELS

It is recommended to put all unused channels into standby mode.

GENERAL RECOMMENDATIONS

The DS32EV400 is a high performance circuit capable of delivering excellent performance. Careful attention must be paid to the details associated with high-speed design as well as providing a clean power supply. Refer to the LVDS Owner's Manual for more detailed information on high speed design tips to address signal integrity design issues.

PCB LAYOUT CONSIDERATIONS FOR DIFFERENTIAL PAIRS

The CML inputs and outputs must have a controlled differential impedance of 100Ω . It is preferable to route CML lines exclusively on one layer of the board, particularly for the input traces. The use of vias should be avoided if possible. If vias must be used, they should be used sparingly and must be placed symmetrically for each side of a given differential pair. Route the CML signals away from other signals and noise

sources on the printed circuit board. See AN-1187 for additional information on LLP packages.

POWER SUPPLY BYPASSING

Two approaches are recommended to ensure that the DS32EV400 is provided with an adequate power supply. First, the supply (V_{DD}) and ground (GND) pins should be connected to power planes routed on adjacent layers of the printed circuit board. The layer thickness of the dielectric should be minimized so that the V_{DD} and GND planes create a low inductance supply with distributed capacitance. Second, careful attention to supply bypassing through the proper use of bypass capacitors is required. A 0.01µF bypass capacitor should be connected to each V_{DD} pin such that the capacitor is placed as close as possible to the DS32EV400. Smaller body size capacitors can help facilitate proper component placement. Additionally, three capacitors with capacitance in the range of 2.2 μF to 10 μF should be incorporated in the power supply bypassing design as well. These capacitors can be either tantalum or an ultra-low ESR ceramic and should be placed as close as possible to the DS32EV400.

Typical Performance Eye Diagrams and Curves

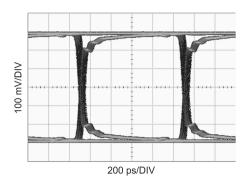


Figure 8. Equalized Signal (40 In FR4, 1 Gbps, PRBS7, 0x07 Setting)

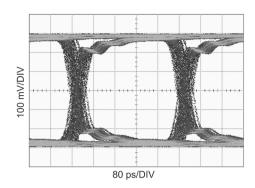


Figure 9. Equalized Signal (40 In FR4, 2.5Gbps, PRBS7, 0x07 Setting)

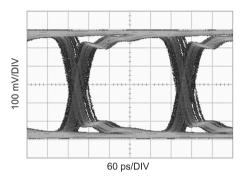


Figure 10. Equalized Signal (40 In FR4, 3.2Gbps, PRBS7, 0x07 Setting)

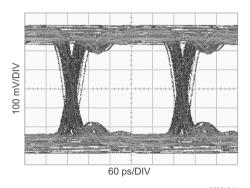


Figure 11. Equalized Signal (10m 24 AWG Twin-AX Cable, 3.2 Gbps, PRBS7, 0x07 Setting)

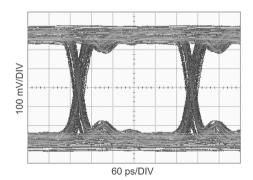


Figure 12. Equalized Signal (32 In Tyco XAUI Backplane, 3.125 Gbps, PRBS7, 0x07 Setting)

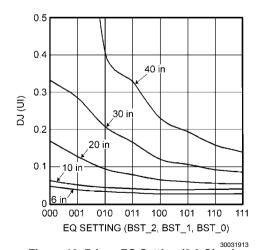
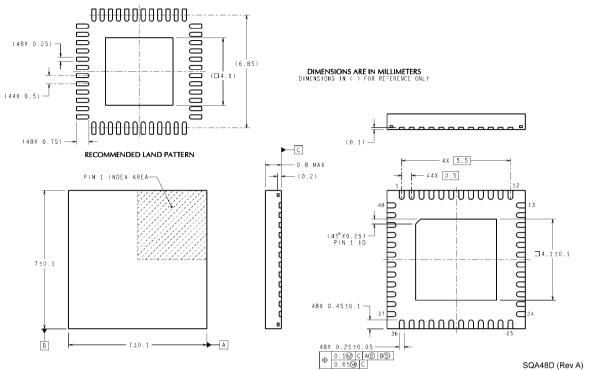



Figure 13. DJ vs. EQ Setting (3.2 Gbps)

Physical Dimensions inches (millimeters) unless otherwise noted

7mm x 7mm 48-pin LLP Package Order Number DS32EV400 Package Number SQA48D

To order lead-free products, call your National Semiconductor distributors. They can order products for you with an "NOPB" specification. For more information on our Lead-free program, please check out our Lead-Free Status page.

Notes

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2007 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530-85-86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +49 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560