

HIGH TEMPERATURE POWER GATE DRIVER

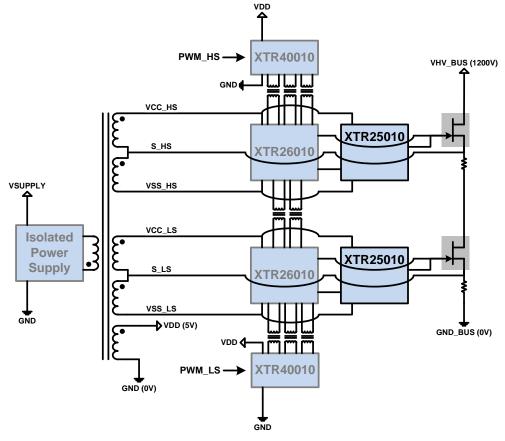
FEATURES

- ▲ Supply voltage up to 40V.
- ▲ Operational beyond the -60°C to +230°C temperature range.
- ▲ Half-bridge driver.
- Integrated charge pump.
- Latch-up free.
- Ruggedized SMT packages.
- ▲ Also available as bare die.
- ▲ Up to 6A peak current drive strength.

APPLICATIONS

- Reliability-critical, Automotive, Aeronautics & Aerospace, Down-hole.
- ▲ Intelligent Power Modules (IPM).
- ▲ Power inverters.
- ▲ Power conversion and motor drive.
- ▲ DC-DC converters and switched mode power supplies.

PRODUCT HIGHLIGHT


DESCRIPTION

XTR25010 is a high-temperature, high reliability power transistor driver integrated circuit designed to drive normally ON and normally-OFF power transistors in Silicon Carbide (SiC), Gallium Nitride (GaN) and standard silicon, including JFETs,MOSFETs, BJTs, SJTs and MESFETs.

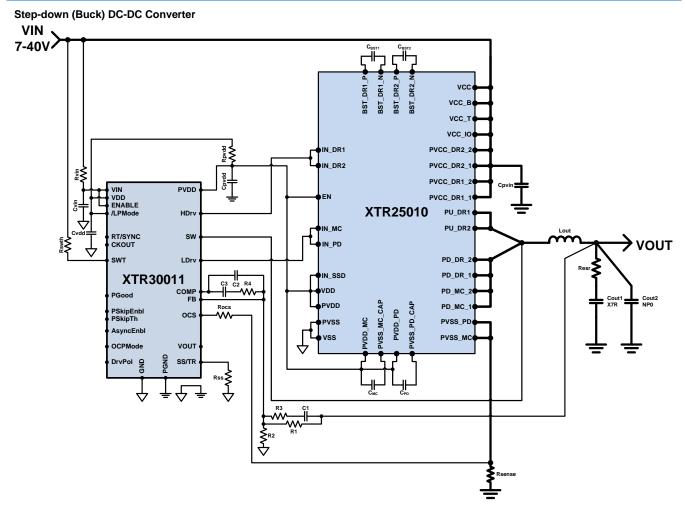
For turning on the power transistors, the XTR25010 includes two independent pull-up gate-drive-channels (PU_DR1 and PU_DR2) capable of sourcing 3A peak current each. For turning off the power transistors, the XTR25010 includes two pull-down gate-drive-channels capable of sinking 3A peak current each (PD_DR and PD_MC).

For driving wide bandgap transistors, it is recommended to use XTR25010 as a power stage extension for the XTR26010, which generates the needed control signals and additional protection functions (see XTR26010 datasheet and application note for more details).

XTR25010 can also be used standalone as a half-bridge driver for DC-DC converters and motor drive.

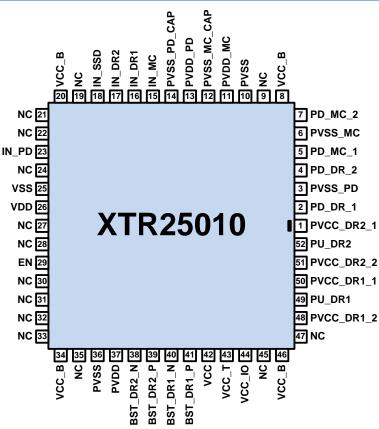
ORDERING INFORMATION

<u> </u>		<u>25</u> ↓	<u>010</u>	
Source: X = X-REL Semi	Process: TR = HiTemp, HiRel R = HiRel	Part family	Part number	


Product Reference	Temperature Range	Package	Pin Count	Marking
XTR25010-BD	-60°C to +230°C	Bare die		
XTR25011-LJ	-60°C to +230°C	Ceramic LJCC52	52	XTR25011

Other packages and packaging configurations possible upon request.

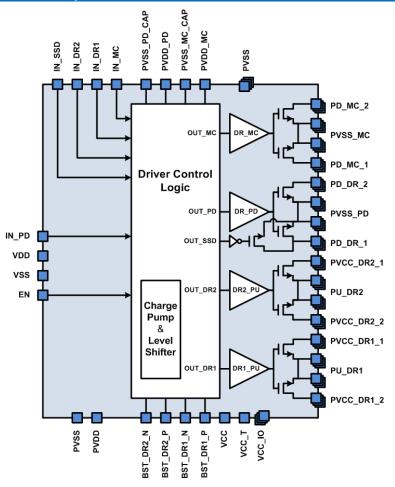
TYPICAL APPLICATION



ABSOLUTE MAXIMUM RATINGS

Supply voltage VCC_IO-PVSS		-0.5V to 44V
	VCC, VCC_B, VCC_T, and PVCC_DRx_x	PVSS-0.5V to VCC_IO+0.5V
	PVDD-PVSS	-0.5V to 5.5V
	VDD, PVDD_PD and PVDD_MC	PVSS-0.5V to PVDD+0.5V
VSS, PVSS_MC, PVSS_PD		PVSS-0.5V to PVSS+0.5v
Inputs pins	EN, IN_SSD, IN_DR1, IN_DR2, IN_MC and IN_PD	PVSS-0.5V to PVDD+0.5V
Outputs pins	PD_MC_x and PD_DR_x	PVSS-0.5V to VCC_IO+0.5V
	PU_DR1	PVSS-0.5V to PVCC_DR1+0.5V
	PU_DR2	PVSS-0.5V to PVCC_DR2+0.5V
Storage Temp	erature Range	-70°C to +230°C
Operating Jun	ction Temperature Range	-70°C to +300°C
ESD Classifica	ation	1kV HBM MIL-STD-883

Caution: Stresses beyond those listed in "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device. These are stress ratings only and functionality of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to "ABSOLUTE MAXIMUM RATINGS" conditions for extended periods may permanently affect device reliability.


PACKAGING (LJCC52: J-FORMED LEADED CHIP CARRIER)

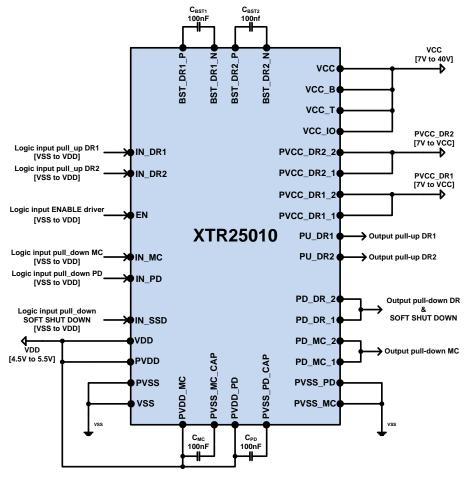
XTR25010

BLOCK DIAGRAM (XTR25010-BD)

Die level block diagram showing all available functionalities and bond-pads.

PIN DESCRIPTION (LJCC52: 52 LEAD J-SHAPED CHIP CARRIER)

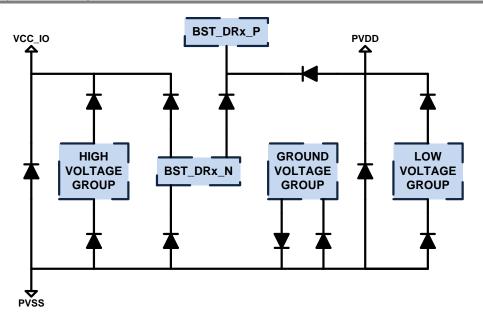
Pin number	Name	Description
1	PVCC_DR2_1	Connect to positive supply voltage of PU_DR2 driver (PVCC_DR2).
2	PD_DR_1	Connect to output of the pull-down driver PD_DR_2.
3	PVSS_PD	Power VSS of PD driver. Connect to PVSS plane.
4	PD_DR_2	Connect to output of the pull-down driver PD_DR_1.
5	PD_MC_1	Connect to Miller Clamp pull-down driver PD_MC_2
6	PVSS_MC	Power VSS of MC driver. Connect to PVSS plane.
7	PD_MC_2	Connect to Miller Clamp pull-down driver PD_MC_1
8	VCC_B	Connect to power VCC plane.
9	NC	No internal connection.
10	PVSS	Power VSS. Connect to VSS through a local plane.
11	PVDD_MC	Top plate of bypassing capacitor of the Miller clamp (MC) pre-driver. Connect to PVDD plane.
12	PVSS_MC_CAP	Bottom plate of bypassing capacitor (100nF) of the Miller clamp (MC) pre-driver. This pin is internally connected to PVSS_MC_1/PVSS_MC_2. Do not connect to VSS plane.
13	PVDD_PD	Top plate of bypassing capacitor of the pull-down (PD) pre-driver. Connect to PVDD plane.
14	PVSS_PD_CAP	Bottom plate of bypassing capacitor (100nF) of the pull-down (PD) pre-driver. This pin is internally connected to PVSS_PD_1/PVSS_PD_2. Do not connect to VSS plane.
15	IN_MC	Digital Schmidt triggered input control signal of Active Miller Clamp pull-down driver PD_MC (0/5V vs. VSS)
16	IN_DR1	Digital Schmidt triggered input control signal of pull-up driver PU_DR1 (0/5V vs. VSS).
17	IN_DR2	Digital Schmidt triggered input control signal of pull-up driver PU_DR2 (0/5V vs. VSS).
18	IN_SSD	Digital Schmidt triggered input control signal of soft-shutdown driver (0/5V vs. VSS).
19	NC	No internal connection.
20	VCC_B	Connect to power VCC plane.
21	NC	No internal connection.



Pin number	Name	Description			
22	NC	No internal connection.			
23	IN_PD	Digital Schmidt triggered input control signal of pull-down driver PD_DR (0/5V vs. VSS).			
24	NC	No internal connection.			
25	VSS	Negative supply voltage of the driver (its value depends on the power transistor to be driven). Connect to the reference ground plane of the circuit.			
26	VDD	5V supply voltage versus VSS, supplying all logic except the output stage of the drivers. Connect to the VDD supply plane.			
27	NC	No internal connection.			
28	NC	No internal connection.			
29	EN	Digital Schmidt triggered input enable signal for the driver outputs (0/5V vs. VSS).			
30	NC	No internal connection.			
31	NC	No internal connection.			
32	NC	No internal connection.			
33	NC	No internal connection.			
34	VCC_B	Connect to power VCC plane.			
35	NC	No internal connection.			
36	PVSS	Power VSS. Connect to VSS through a local plane.			
37	PVDD	5V supply voltage versus VSS, supplying the 5V IO cells of the circuit. Connect to the VDD supply plane through a local plane.			
38	BST_DR2_N	Negative terminal of the (100nF) bootstrap capacitor of the PU_DR2 driver.			
39	BST_DR2_P	Positive terminal of the (100nF) bootstrap capacitor of the PU_DR2 driver.			
40	BST_DR1_N	Negative terminal of the (100nF) bootstrap capacitor of the PU_DR1 driver.			
41	BST_DR1_P	Positive terminal of the (100nF) bootstrap capacitor of the PU_DR1 driver.			
42	vcc	Positive supply voltage of the driver (its value depends on the power transistor to be driven). Connect to power VCC plane.			
43	VCC_T	Connect to power VCC plane.			
44	VCC_IO	Connect to power VCC plane.			
45	NC	No internal connection.			
46	VCC_B	Connect to power VCC plane.			
47	NC	No internal connection.			
48	PVCC_DR1_2	Connect to positive supply voltage of PU_DR1 driver (PVCC_DR1).			
49	PU_DR1	Output of the pull-up driver with 3A peak drive capability.			
50	PVCC_DR1_1	Connect to positive supply voltage of PU_DR1 driver (PVCC_DR1).			
51	PVCC_DR2_2	Connect to positive supply voltage of PU_DR2 driver (PVCC_DR2).			
52	PU_DR2	Output of the pull-up driver with 3A peak drive capability.			

XTR25010

RECOMMENDED OPERATING CONDITIONS


Parameter	Min	Тур	Мах	Units
High voltage power supply VCC-VSS (VCC_B, VCC_T and VCC_IO connected to VCC)	7		40	V
High voltage driver power supplies: PVCC_DR1 (PVCC_DR1_1 connect to PVCC_DR1_2)	VSS+7		VCC	V
High voltage driver power supplies: PVCC_DR2 (PVCC_DR2_1 connect to PVCC_DR2_2)	VSS+7		VCC	V
Low voltage power supply VDD-VSS (PVDD, PVDD_PD and PVDD_MC connected to VDD)	4.5		5.5	V
Inputs: IN_DR1, IN_DR2, IN_MC, IN_PD, IN_SSD, EN	VSS		VDD	
Junction Temperature ¹ T _j	-60		230	°C

¹ Operation beyond the specified temperature range is achieved

ESD CLAMPING SCHEME

Pin Groups	Pins
High voltage power supply	VCC_IO-PVSS
High voltage group	PVCC_DR2_1, PD_DR_1, PD_DR_2, PU_DR2, PU_DR1, BST_DR1_N, BST_DR2_N, VCC_T, VCC PD_MC_2, PD_MC_1, PVCC_DR1_2, PVCC_DR1_1, PVCC_DR2_2
Low voltage power supply	PVDD-PVSS
Low voltage group	IN_DR1, IN_DR2, IN_MC, IN_PD, IN_SSD, EN, PVDD_PD, PVDD_MC, VDD
Bootstrap voltages	BST_DRx_N: BST_DRx_P
Ground voltage group	VSS, PVSS_PD_CAP, PVSS_MC_CAP, PVSS_MC, PVSS_PD

ELECTRICAL SPECIFICATIONS

Parameter		Condition	Min	Тур	Max	Units
Supply voltage		-			-	
VCC-VSS			7		40	V
VDD-VSS			4.5		5.5	V
Quiescent current consumption	I _{VCC} I _{VDD}	No PWM modulation		250 1.1		μA mA
Driver	-			-	_	_
Propagation delay/channel		from digital inputs to driver outputs		150		ns
Rise time		1nF output capacitor per driver channel		15		ns
Fall time		1nF output capacitor per driver channel		15		ns
Minimum ON time t _{ON_min}		1nF output capacitor per driver channel	0.5			μs
Minimum OFF time t _{OFF_min}		1nF output capacitor per driver channel	0.5			μs
Peak output current of PU_DR1 driver		100nF output capacitor		3		A
Peak output current of PU_DR2 driver		100nF output capacitor		3		A
Continuous output current of PU_DR2		VCC-VSS=7V		0.5		A
Peak output current of PD_DR driv	er	100nF output capacitor		3		A
Peak output current of PD_MC driver		100nF output capacitor		3		A
Soft-shutdown transistor R _{ON}			50	100	150	Ω
Schmidt triggered inputs (IN_DR	1, IN_DF	R2, IN_MC, IN_SSD)				
VIH		V _{IH}	4			V
V _{IL}		Vil			1	V

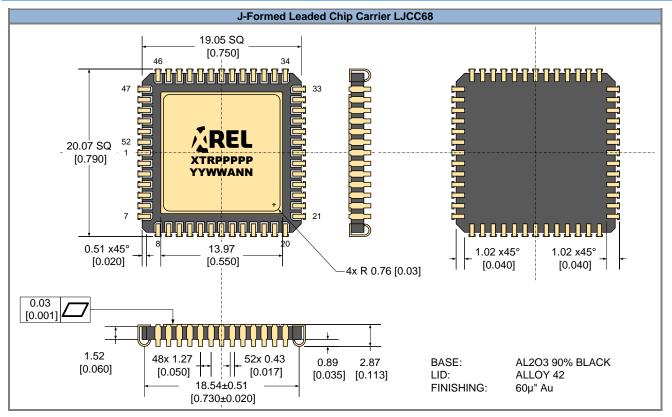
XTR25010

THEORY OF OPERATION

Introduction

XTR25010 is a high-temperature, high reliability power transistor driver and controller integrated circuit specifically designed to drive wide bandgap power transistors, such as Silicon Carbide (SiC) (including normally-On and normally-Off JFETs), Gallium Nitride (GaN) High Electron Mobility Transistors (HEMT), and Power MOSFETs and BJTs. For turning on the power transistors, the XTR26010 includes two independent pull-up gate-drivechannels (PU_DR1 and PU_DR2) capable of sourcing 3A each. For turning off the power transistors, the XTR25010 includes two pull-down gate-drive-channels capable of sinking 3A peak current each (PD_DR and PD_MC). The PD_DR channel is used for the effective turn-off, while PD_MC channel is used for Active Miller Clamping (AMC).

For driving wide bandgap transistors, it is recommended to use XTR25010 as a power stage extension for the XTR26010, which generates the needed control signals and additional protection functions (see XTR26010 for more details).


For DC/DC converters and motor drive, the XTR25010 can be driven directly with suitable signals from PWM controllers such as XTR30010.

Truth table

- The EN input is master over all other inputs.
- IN_SSD is active low.
 - The outputs can be set to high impedance with a logic 1 on EN and IN_SSD, and logic 0 on all other inputs.

	INPUTS						OUTPUTS				
EN	IN_SSD	IN_DR1	IN_DR2	IN_PD	IN_MC	PU_DR1 PU_DR2 PD_DR PD_I					
0	х	х	х	х	х	z	z	VSS	VSS		
1	0	х	х	х	х	z	z	VSS (SSD)	z		
1	1	1	0	х	х	PVCC_DR1	z	z	z		
1	1	0	1	х	х	z	PVCC_DR2	z	z		
1	1	1	1	х	х	PVCC_DR1	PVCC_DR2	z	z		
1	1	0	0	0	0	z	Z	z	Z		
1	1	0	0	0	1	z	z	z	VSS		
1	1	0	0	1	0	z	z	VSS	z		
1	1	0	0	1	1	z	z	VSS	VSS		

PACKAGE OUTLINES: LJCC52 (J-FORMED LEADED CHIP CARRIER)

IMPORTANT NOTICE & DISCLAIMER

Information in this document supersedes and replaces all information previously supplied. Information in this document is provided solely in connection with X-REL Semiconductor products.

The information contained herein is believed to be reliable. X-REL Semiconductor makes no warranties regarding the information contain herein. X-REL Semiconductor assumes no responsibility or liability whatsoever for any of the information contained herein. X-REL Semiconductor assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. X-REL Semiiconductor reserves the right to make changes, corrections, modifications or improvements, to this document and the information herein without notice. Customers should obtain and verify the latest relevant information before placing orders for X-REL Semiconductor products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. Unless expressly approved in writing by an authorized representative of X-REL Semiconductor, X-REL Semiconductor products are not

Unless expressly approved in writing by an authorized representative of X-REL Semiconductor, X-REL Semiconductor products are not designed, authorized or warranted for use in military, aircraft, space, life saving, or life sustaining applications, nor in products or systems where failure or malfunction may result in personal injury, death, or property or environmental damage.

General Sales Terms & Conditions apply.

CONTACT US

For more information on X-REL Semiconductor's products, technical support or ordering:

- ✓ Web: www.x-relsemi.com/products
- ✓ Tel: +33 456 580 580
- ✓ Fax: +33 456 580 599
- ✓ Sales: sales@x-relsemi.com www.x-relsemi.com/EN/Sales-Representatives
- ✓ Information: info@x-relsemi.com
- ✓ Support: support@x-relsemi.com

X-REL Semiconductor

90, Avenue Léon Blum 38100 Grenoble France