Precision Waveform Generator #### GENERAL DESCRIPTION The XR-8038 is a precision waveform generator IC capable of producing sine. square, triangular, sawtooth and pulse waveforms with a minimum number of external components and adjustments. Its operating frequency can be selected over eight decades of frequency, from 0.001 Hz to 200 KHz by the choice of external R-C components. The frequency of oscillation is highly stable over a wide range of temperature and supply voltage changes. Both full frequency sweeping as well as smaller frequency variations (FM) can be accomplished with an external control voltage. Each of the three basic waveforms, i.e., sinewave, triangle and square wave outputs are available simultaneously, from independent output terminals. The XR-8038 monolithic waveform generator uses advanced processing technology and Schottky-barrier diodes to enhance its frequency performance it can be readily interfaced with a monolithic phase-detector circuit, such as, the XR-2208, to form stable phase-locked loop circuits. #### **FEATURES** With Improved Sweep Range, Frequency Drift and Max. Operating Frequency Simultaneous Sine. Triangle and Square-Wave Outputs Low Sine Wave Distortion-THD High FM and Triangle Linearity Wide Frequency Range Variable Duty-Cycle ## **APPLICATIONS** Precision Waveform Generation: Sine. Triangle, Square, Pulse Sweep and FM Generation Tone Generation Instrumentation on and Test Equipment Design Precision PLL Design ### **ABSOLUTE MAXIMUM RATINGS** Power Supply 36V Power Dissipation (package limitation) Ceramic package 750 mW Derate above +25°C 6.0 mW°C Storage Temperature Range -65°C to + 150°C Rev A ### **FUNCTIONAL BLOCK DIAGRAM** #### SYSTEM DESCRIPTION The XR-8038 precision waveform generator produces highly stable and sweepable square, triangle, nd sine waves across eight frequency decades. The device time base employs resistors and a capacitor for frequency and duty cycle determination. The generator contains dual comparators, a flip-flop driving a switch, current sources, buffers, and a sine wave converter. Three identical frequency waveforms are simultaneously available. Supply voltage can range from 10V to 30V, or ±5V to ±15V with dual supplies. Unadjusted sine wave distortion is typically less than 0.7%, with Pin 1 open and 82 k Ω from Pin 12 to Pin 11 (- V or ground). Sine wave distortion may be improved by including two 100 k Ω potentiometers between Vcc and - V (or ground), with one wiper connected to Pin 1 and the other connected to Pin 12. Small frequency deviation (FM) is accomplished by applying modulation voltage to Pins 7 and 8; large frequency deviation (sweeping) is accomplished by applying voltage to Pin 8 only Sweep range is typically 1000:1. The square wave output is an open collector transistor, output amplitude swing closely approaches the supply voltage. Triangle output amplitude is typirally 13 of, the supply, and sine wave output reaches 0.22 of the supply voltage. | XR-8038 ELECTRICAL | _ PERFORMANCE | CHARACTERISTICS | |--------------------|---------------|-----------------| |--------------------|---------------|-----------------| | | | CONDITIONS (SEE NOTE 1) | | LIMITS | | | GROUP A | |------------------------------------|----------------------------|--|------------------------------|-------------|--------------|---------------------------|-----------| | TEST | SYMBOL | CONDITIONS | TEMPERATURE | MIN | MAX | UNIT | SUBGROUP | | Supply Current | Icc HI
Measure
Pin 6 | Vcc = ±18V | TA = 25°C
-55°C≤TA≤+125°C | | 60.0
80.0 | mA
mA | 1
2, 3 | | Supply Current | Icc LO
Measure
Pin 6 | Vcc ±10V | TA = 25°C
-55°C≤TA≤+125°C | 3.0
2.0 | 15.0
25.0 | mA
mA | 1
2, 3 | | Timing Capacitor
Source Current | I+CAP | Vcc = ±15V VsweEP = +10V RA = RB = 10kΩ VcAP = 15.5V Measure Current at Pin 10 | Ta = 25°C
-55°C≤Ta≤+125°C | 4 50 | 550
600 | μ Α1
μ Α | 2, 3 | | Timing Capacitor
Sink Current | I-CAP | Vcc = ±15V
VsweEP = +10V
Ra = Rb = 10kΩ
VcaP = -5.5V
Measure
Current at | Ta = 25°C
-55°C≤Ta≤+125°C | 550 | -450
-400 | μΑ
μ Α | 2, 3 | | Timing Capacitor
Source Current | І+нідн | Pin 10 Vcc= ±15V VSWEEP = +12V RA = RB = 1kΩ VcAP = +5.5V Measure | Ta = 25°C | 2.50 | 3.50 | mA | 1 | | | | Current at
Pin 10 | -55°C≤Ta≤+125°C | 2.00 | 4.00 | mA | 2, 3 | | Timing Capacitor
Sink Current | l-ніgн | Vcc = ±15V
VswEEP = +12V
RA = RB = 1kΩ
VcAP = +5.5V
Measure | Ta = 25°C | -3.50 | -2.50 | mA | 1 | | | | Current at
Pin 10 | -55°C≤Ta≤+125°C | -4.00 | -2.00 | m A | 2, 3 | | Timing Capacitor
Source Current | I+ŁOW | VCC = ±15V
VSWEEP = +10V
RA = RB = 1MΩ
VCAP = +5.5V
Measure | Ta = 25°C | 2.20 | 15.00 | μА | 1 | | | | Current at
Pin 10 | -55°C≤Ta≤+125°C | -2.00 | 50.00 | μА | 2, 3 | | Timing Capacitor
Sink Current | l-Low | Vcc = ±15V
VswEEP = +10V
RA = RB = 1MΩ
VcAP = -55V
Measure | TA = 25°C | -15.00 | -2.20 | μА | 1 | | | | Current at
Pin 10 | -55°C≤Ta≤+125°C | -50.00 | 2.0 | μА | 2, 3 | | - : | · · · · · | 10 | | | | | | |--|-----------|--|------------------|--------|--------|------------|------| | Timing Capacitor
Sink Current | 1-IN | Vcc = ±15V
Vsweep = +10V
RA = RB = ∞ | Ta = 25°C | -8.0 | 1.00 | μA | 1 | | | | VCAP = +5.5V
Measure
Current at
Pin 10 | -55°C≤TA≤+125°C | -20.00 | -2.00 | μА | 2, 3 | | Timing Capacitor
Source Current | I+LEAK | Vcc = ±15V
Vsweep = +10V
RA = RB
VcAP = +4.5V
Measure | Ta = 25°C | -1.00 | 1.00 | μΑ | 1 | | | | Current at
Pin 10 | -55°C≤Ta≤+125°C | -10.00 | 10.00 | μ Α | 2, 3 | | Timing Capacitor
Sink Current | I-LEAK | Vcc = ±15V
Vsweep = +10V
RA = RB = ∞
VCAP = -4.5V
Measure | Ta = 25°C | -1.00 | 1.00 | μА | 1 | | | | Current at
Pin 10 | -55°C≤Ta≤+125°C | -10.00 | 10.00 | μА | 2, 3 | | FM Sweep Bias
Current | VBIAS | Vcc = ±15V
No VswEEP
RA = RB =10KΩ
VcAP = GND
Measure
current at | Ta = 25°C | -1.00 | 1.00 | μА | 1 | | | | Pin 8 | -55°C≤+Ta≤+125°C | -10.00 | 10.00 | μ Α | 2, 3 | | FM Bias Voltage | VBIAS | Vcc = ±15V
No Vsweep
Ra = Rb = 10K
Vcap = GND
Measure | Ta = 25°C | 8.30 | 9.70 | ٧ | 1 | | | | Voltage at Pin 7 | -55°C≤TA≤+125°C | 3.00 | 10.00 | V | 2, 3 | | Square Wave
Output
Saturation
Voltage | SQLOW | Vcc = ±15V
Vsweep = GND
Ra = Rb = 10ΚΩ
Vcap = +5.5V
IPIN9 = 2mA
Measure | Ta = 25°C | -15.00 | -14.60 | ٧ | 1 | | | | Voltage at
Pin 9 | -55°C≤Ta≤+125°C | -15.00 | -14.00 | V | 2. 3 | | Square Wave
Output
Leakage
Current | SQHIGH | Vcc = ±15V
Vsweep = GND
Ra = Rb= 10KΩ
Vcap = +55V
IPIN9 = +15V | Ta = 25°C | -2.5 | 20.0 | μА | 1 | | | | Measure
Current at
Pin 9 | -55°C≤Ta≤+125°C | -4.0 | 300.0 | μА | 2, 3 | # XR-8038 | Sine Output
Offset Voltage | VOSSIN | VCC-±15V VSWEEP = GND RA = RB = 10KΩ VCAP = GND Measure Voltage at Pin 2 | TA = 25°C
-55°C≤TA≤+125°C | -100
-600 | 600 | mV
mV | 2, 3 | |-------------------------------|--------|---|------------------------------|----------------|----------------|----------|------| | Sine Output
Voltage | Vout+ | Vcc = ±15V VswEEP = GND RA = RB = 10kΩ VcAP = +5V Measure Voltage at Pin 2 | TA = 25°C
-55°C≤TA≤+125°C | 2.50 | 3.90
4.70 | v | 2, 3 | | Sine Output
Voltage | Vouт- | Vcc = ±15V VswEEP = GND RA = RB = 10KΩ VcAP = -5V Measure Voltage at Pin 2 | TA = 25°C
-55°C≤TA≤+125°C | -3.90
-4.70 | -2.50 | v | 2,3 | | Sine Adjust
Voltage | VADJ+ | Vcc = ±15V
No VsweEP
Ra = RB = ∞
VcaP = GND
Measure
Voltage at
Pin 1 | Ta = 25°C
-55°C≤Ta≤+125°C | 2.50
1.70 | 3.90
4.70 | v
v | 2,3 | | Sine Adjust
Voltage | VADJ- | Vcc = ±15V
No Vsweep
Ra = Rb = ∞
VcaP = GND
Measure
Voltage at
Pin 12 | Ta = 25°C
-55°C≤Ta≤+125°C | -3.90
-4.70 | -2.40
-1 70 | V | 2, 3 | | Frequency | Fo | Vcc = ±10V
CT = 3000pF
RA = RB = 10KΩ
Connect Pin
7 to Pin 8
RL = 10KΩ
Measure | TA =25°C | 8.600 | 10.000 | KHz | 9 | |---------------------------------------|------------|--|-----------------|-------|--------|-------|--------| | | | Frequency at
Pin 9 | -55°C≤Ta≤+125°C | 3.400 | 10.100 | KHz | 10, 11 | | Sine Wave
Distortion
Unadjusted | Тно | $Vcc = \pm 10V$ $CT = 3000pF$ $RA = RB = 100KΩ$ $RL = 10KΩ$ $Connect Pin$ 7 to Pin 8 $Measure$ | TA =25°C | 0.0 | 5.5 | % | 9 | | | | Distortion at
Pin 2 | -55°C≤Ta≤+125°C | 0.0 | 25.0 | %
 | 10, 11 | | Sine Wave
Distortion
adjusted | THD
ADJ | Vcc = ±10V
CT = 3000pF
RA = R8 = 100KΩ
RL = 10KΩ
Connect Pin
7 to Pin 8
Adjust RA
+Rs to get 50%
Duty Cycle at
Pin 9
Measure | TA =25°C | 0.0 | 2.1 | % | 9 | | | | Distortion at
Pin 2 | -55°C≤Ta≤+125°C | 0.0 | 20.0 | % | 10, 11 | Note 1 - 82KΩ between Pin 11 and Pin 12