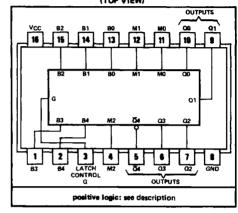
- Fast Multiplication . . . 5-Bit Product in 26 ns Typ
- Power Dissipation . . . 110 mW Typical
- Latch Outputs for Synchronous Operation
- Expandable for m-Bit-by-n-Bit Applications
- Fully Compatible with Most TTL and Other Saturated Low-Level Logic Families
- Diode-Clamped Inputs Simplify System Design

description

These low-power Schottky circuits are designed to be used in parallel multiplication applications. They perform binary multiplication in two's-complement form, two bits at a time.

The M inputs are for the multiplier bits and the B inputs are for the multiplicand. The Q outputs represent the partial product as a recoded base-4 number. This recoding effectively reduces the Wallace-tree hardware requirements by a factor of two.

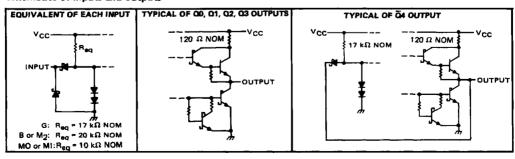

The outputs represent partial products in one'scomplement form generated as a result of multiplication. A simple rounding scheme using two additional gates is needed for each partial product to generate two's complement.

The leading (most-significant) bit of the product is inverted for ease in extending the sign to square (left justify) the partial-product bits.

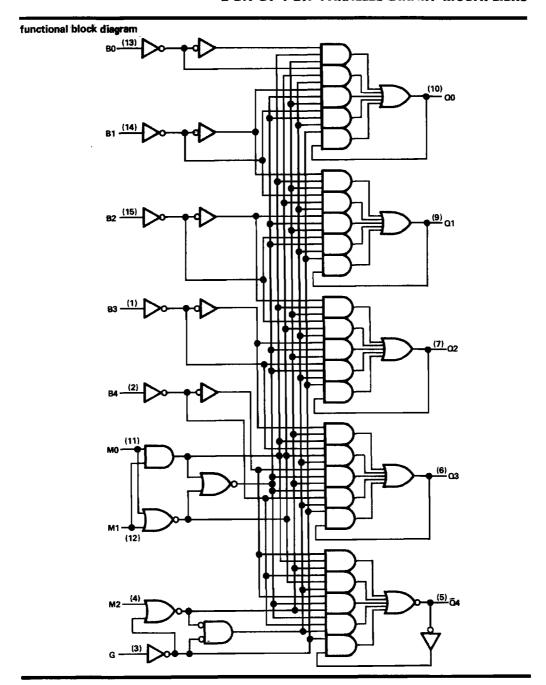
The SN54LS261 is characterized for operation over the full military temperature range of -55° C to 125°C; the SN74LS261 for operation from 0°C to 70°C.

schematics of inputs and outputs

SN54LS261 ... J OR W PACKAGE SN74LS261 ... J OR N PACKAGE (TOP VIEW)


FUNCTION TABLE

	OUTPUTS							
LATCH	MULTIPLIER			ō4	03			00
CONTROL	M2	M1	MO	Q4				CO
L	х	×	X	Q40	030	020	Q10	000
H	Ł	L	Ł	н	L	L	L	Ł.
H	L	L	н	B̃4	B4	В3	B 2	81
н	L	н	L	B4	B4	вз	B2	В1
н	L	н	н	B4	В3	B2	B 1	во
н	н	L	L	B4	БЗ	B2	B 1	BO
н	н	L	н	B4	B4	B ₃	Ē2	B1
н	н	н	L	B4	B 4	B ₃	<u>B</u> 2	B1
н	н	Н	н	н	L	L	L	L


H = high level, L = low level, X = irrelevant

Q40...Q00 = The logic level of the same output before the high-to-low transition of G.

B4 . . . B0 = The logic level of the indicated multiplicand (B) input.

TYPES SN54LS261, SN74LS261 2-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS

74

TYPES SN54L8261 SN74LS261 2-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS

REVISED OCTOBER 1976

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)		 7V
Input voltage		 7V
Operating free-air temperature range	: SN54LS261	 55°C to 125°C
	SN74LS261	 0°C to 70°C
Storage temperature range		 65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

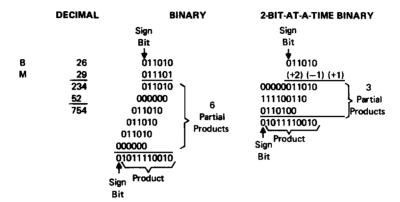
		SN54LS261			SN74LS261			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	>
High-level output current, IOH		Г		-400			-400	μΑ
Low-level output current, IOL				4			8	mA
Width of enable pulse, t _W		25			25			ns
Catura sima a	Any M input	174			17↓			ns
Setup time, t _{su}	Any B input		15↓		151	i \$		118
Hala e	Any M input				01			
Hold time, th	Any 8 input	Ot			O+			ns
Operating free-air temperature, TA				125	0		70	°C

[‡]The arrow indicates that the falling edge of the enable pulse is used for reference. electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		700		.+	L S	SN54L\$261		S			
		TEST CONDITIONS [†]			MIN	TYP*	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			v
VIL	Low-level input voltage				Ť –		0.7			8.0	V
VIK	Input clamp voltage	VCC = MIN,	I ₁ = -18 mA		Ι		-1.5			-1.5	V
νон	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{1H} = 2 V, I _{OH} =400 μ/	<u> </u>	2.5	3,4		2.7	3.4		v
	I am total amanda salana	V _{CC} = MIN,	V _{IH} = 2 V,	IOL * 4 mA		0.25	0.4		0.25	0.4	V
VOL	Low-level output voltage	V _I L = V _I L max		IOL = 8 mA					.0.35	0.5	1 °
	Input current at	14 14AV	V1 ≈ 7 V	MO or MI			0.2			0,2	
H	maximum input voltage	V _{CC} = MAX, V _I = 7 V		All others			0.1			0,1	mA
		MANY	V _i = 2.7 V MO or MI All others	MO or MI			40			40	μΑ
414	High-level input current	evel input current V _{CC} = MAX,		All others	1	-	20			20	1 <i>"</i> ^
	L'au lauri ianus aurumas	level input current VCC = MAX,	V ₁ = 0.4 V M	MO or MI	Ì		-0.8			-0,8	mA
IIL Low-level input curr	Cow-level impor current		All others		0.4			-0.4			
ios	Short-circuit output current	V _{CC} = MAX			-20		100	-20		100	mA
Icc	Supply current	V _{CC} = MAX, Outputs open.	All inputs at 0	V,	22		38		20	40	mA

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time and duration of the output short-circuit should not exceed one second.

switching characteristics, VCC = 5 V, TA = 25°C

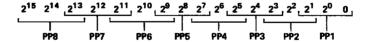

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
tPLH .	Enable G	Any Q			22	35	ns
*PHL	Eliable G	Any C	CL = 15 pF,		20	30	· ns
ФLН	Any M input	Any Q	C[=18βr, R[=2kΩ,		25_	40	ns
tPHL	Any or input	Any C	See Note 2		22	35	ns
ФГН	Any B input	Any Q	386 NOTE 2		27	42	ns
tPHL	Any B imput	Anyu			24	37	ns

[¶] tp_H ≡ propagation delay time, low-to-high-level output; tpHL = propagation delay time, high-to-low-level output.

NOTE 2: Load circuit and voltage waveforms are shown on page 3-11.

TYPICAL APPLICATION DATA

Multiplication of the numbers 26 (multiplicand) by 29 (multiplier) in decimal, binary, and 2-bit-at-a-time-binary is shown here:



Two points should be noted in the two-bit-at-a-time-binary example above. First, in positioning the partial products beneath each other for final addition, each partial product is shifted two places to the left of the partial products above it instead of one place as is done in regular multiplication. Second, the msb of the partial product (the sign bit) is extended to the sign-bit column of the final answer.

A substantial reduction of multiplication time, cost, and power is obtained by implementing a parallel partial-product-generation scheme using a 2-bit-at-a-time algorithm, followed by a Wallace Tree summation.

Partial-product-generation rules of the algorithm are:

 Examine two bits of multiplier M plus the next lower bit. For the first partial product (PP1) the next lower bit is zero.

TYPES SN54LS261, SN74LS261 2-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS

TYPICAL APPLICATION DATA

2. Generate partial product (PPi) as shown in the following table:

MULTIPLIER BITS FROM STEP 1			OPERATOR SYMBOL	TO OBTAIN PARTIAL PRODUCT	
221-1	221-2	221-3	STMBUL		
0	0	0	0	Replace multiplicand by zero	
0	0	1	+1 B	Copy multiplicand	
0	1	0	+1 B	Copy multiplicand	
0	1	1	+2 B	Shift multiplicand left one bit	
1	0	0	-2 B	Shift two's complement of multiplicand left one bit	
1	0	1	-1 B	Replace multiplicand by two's complement	
1	1	0	-1 B	Replace multiplicand by two's complement	
1	1	1	0	Replace multiplicand by zero	

- 3. Weight the partial products by indexing each two places left relative to the next-less-significant product.
- 4. Extend the most-significant bit of the partial product to the sign-bit place value of the final product.

EXAMPLE OF ALGORITHM

M = 29 = 011101	Operator Symbol	B = 26 = 011010
ابب 010 رب	+1 B	00000011010
↓1i0	-1B	111100110
0 i 1	+2 B	0110100

The summation of these partial products was shown in the 2-bit-at-a-time binary multiplication example above.

The 'LS261 generates partial products according to this algorithm with two exceptions:

- The one's complement is generated for the cases requiring the two's complement. The two's complement can be
 obtained by adding one to the one's complement; this rounding can be done by using one NAND gate and one AND
 gate as shown in Figure B.
- The most-significant bit is complemented to reduce the hardware required to extend the sign bit. This extension can be accomplished by adding a hard-wired logic 1 in bit position 2²ⁱ⁺¹⁵ of each partial product and also in bit position 2¹⁶ of the first partial product (PP1).

TYPES SN54LS261, SN74LS261 2-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS

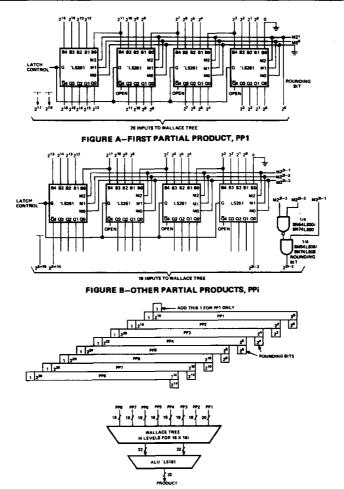


FIGURE C-MANIPULATION OF PARTIAL PRODUCTS FOR ENTRY INTO WALLACE TREE

In general, the 4 x 2 bit 'LS261 can be expanded for use in $4m \times 2n$ bit multipliers. Partial-product generation uses $m \times n$ 'LS261s $m \times n \div 16$ 'LS00s, and $m \times n \div 16$ 'LS08s. The size of the Wallace tree and ALU requirements vary depending on the size of the problem. The count for the 16×16 bit multiplier is:

- 32 SN54LS261/SN74LS261
- 2 SN54LS00/SN74LS00
- 2 SN54LS08/SN74LS08
- 56 SN54LS183/SN74LS183
- 7 SN54LS181/SN74LS181
- 2 SN54S182/SN74S182