DATA SHEET MAY 1998

SXT6051

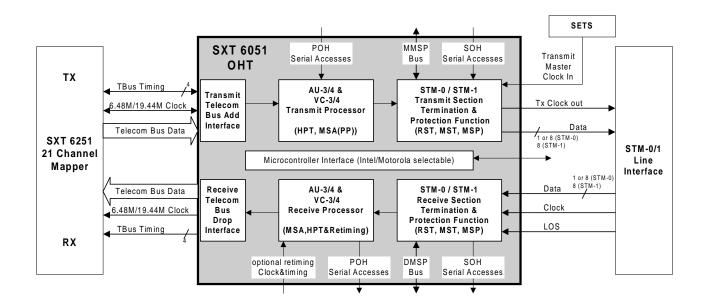
Revision 1.1

STM-1/0 SDH Overhead Terminator

General Description

The SXT6051 Overhead Terminator implements the Regenerator Section Termination, Multiplexer Section Termination and Higher Order Path Termination in STM-0 (51Mb/s) and STM-1 (155mB/s) multiplexers. It provides micro-controller access for performance monitoring, alarm detection and configuration for transmit and receive paths. When used with the SXT6251 (21E1 Mapper), a complete solution for a 21 E1 or a 63 E1 Multiplexer is created.

The SXT6051 is compliant with the latest releases of ITU-T G.703 and G.707. It provides all the alarm and control features to easily implement the multiplexer described in ITU-T G.783.


Applications

- SDH Terminal Mux/ADM for microwave radio
- ADM fiber ring Mux
- Digital Loop Carrier (NGDLC) Systems
- Digital Cross-Connect System

Features

- Performs Regenerator Section, Multiplexer Section, and Higher Order Path Overhead Processing for STM-1 and STM-0 signals.
- Byte parallel interface for STM-1 or STM-0, with byte alignment performed internally. Serial NRZ or B3ZS interface option for STM-0.
- Demultiplexes STM-0/STM-1 signals to Telecom Bus output with optional pointer processor re-timing.
- Multiplexes Telecom Bus data into STM-0 or STM-1 signals with pointer processing.
- Compatible with 1+1 protected ITU architecture.
- Records all RSOH, MSOH, and HPOH alarms. One second counters for B1, B2, B3, M1 REI and G1 REI.
- Full J0/J1 trace identifier processing
- Serial access to STM-1 user-defined, media-dependent and national bytes.
- Dedicated pins for serial access or pass-through feature for E1, E2, F1, F2, F3, D1-D3 & D4-D12 bytes.
- Low power CMOS technology with 3.3V core and 5V I/O in PQFP-208 package.
- IEEE 1149.1 Boundary Scan (JTAG) support.

SXT6051 System Block Diagram

Table Of Contents

In Assignments And Signal Description	1
Functional Description	18
Transmit Data Flow	18
Receive Data Flow	
Modes of Operation. Chip Configuration Repeater Mode Configuration (No Protection) Receive Side Telecom Bus Timing Source Transmit Side Telecom Bus Timing Source Add and Drop Configuration. Receive Side Telecom Bus Timing Source Add and Drop Configuration. Receive Side Telecom Bus Timing Source Transmit Side Telecom Bus Timing Source Updating the Transmit AU Pointer Justification Event Counters Terminal Protection Mode Receive Side Telecom Bus Timing Source Transmit Side Telecom Bus Timing Source Transmit Side Telecom Bus Timing Source Receiver Default Operation Serial Interface Parallel Interface Clock Distribution and Reference Framer Regenerator Section Receiver Multiplexer Section Receiver Multiplexer Section Protection (MSP) Block Pointer Recovery Higher Order Path Receiver Re-Timing Function. Transmitter Default Operation Higher Order Path Transmitter Transmit Pointer Processing Function Transmit Pointer Processing Function Transmit Multiplex Section Protection (MSP Block) Multiplexer Section Transmitter	21 22 22 22 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25
Regenerator Section Transmitter	38
Serial Interface	38
Functional Timing	42
Transmit Frame Parallel Timing	42

ransmit Frame Serial Timing	43
Receive Re-timing Functional Timing	44
Telecom Bus Interface	45 46
Protection Bus Interface Timing. Transmitter "Master" in 1+1 Protection Configuration Transmitter "Slave" in 1+1 Protection Configuration Receive"Master" in 1+1 Protection Configuration Receive "Slave" Configuration (1+1 Protection).	51 51 52
DverHead Byte Access Timing F2 and F3 Digital Channel Functional Timing Transmit side access Receive side access E1, E2 and F1 Orderwire Channel Functional Timing Transmit Timing. Receive timing. HPOH Bytes Serial Access Functional Timing. Transmit serial HPOH Timing Receive Serial HPOH Timing SOH Overhead Access Functional Timing. Transmit Side SOH Serial Timing Receive Side SOH Serial Timing D1 to D3 Data Communication Channel Functional Timing. Transmit Side Access Receive Side Access D4 to D12 Data Communication Channel Transmit Side Access Receive Side Access Receive Side Access Receive Side Access	555 565 565 575 575 575 575 575 575 575
processor Interface & Register Description	
Alicrocontroller Interface Intel interface Motorola interface Interrupt Handling. Interrupt Sources. Interrupt Enables Interrupt Clearing. Status Registers Access C2, K3, K2, K1 and S1 Receive Byte Registers Access	82 82 82 82 83 83 83
	elecom Bus Interface. Multiplexer Telecom Bus Terminal Mode. Multiplexer Telecom Bus ADM Mode. Demultiplexer Telecom Bus (Terminal or ADM) Mode. Trotection Bus Interface Timing. Transmitter "Master" in 1+1 Protection Configuration Transmitter "Slave" in 1+1 Protection Configuration Receive "Master" in 1+1 Protection Configuration Receive "Slave" Configuration (1+1 Protection) AverHead Byte Access Timing F2 and F3 Digital Channel Functional Timing Transmit side access. Receive iside access. E1, E2 and F1 Orderwire Channel Functional Timing Transmit Timing. Receive timing. HPOH Bytes Serial Access Functional Timing. Transmit serial HPOH Timing SOH Overhead Access Functional Timing. Transmit Side SOH Serial Timing Receive Side SOH Serial Timing D1 to D3 Data Communication Channel Functional Timing. Transmit Side Access. D4 to D12 Data Communication Channel Transmit Side Access Receive Side Access Receive Functional Timing Processor Interface & Register Description Interrupt Clearing Interrupt Enables Interrupt Clearing Status Registers Access.

SXT6051 STM-1/0 SDH Overhead Terminator

Register Address Map	84
Global Registers	. 89 . 90
Receive Regenerator Section Termination Registers R_RSTC1—Receive RST Configuration 1 (40H). R_RSTC2—Receive RST Configuration 2 (47H). LOF_LMN—Loss of Frame L, M, & N Configuration (41–42H) OOF_ECNT—Out Of Frame Event Counter (44–43H) B1_ERRCNT—B1 Error Counter (46–45H).	. 92 . 93 . 93 . 94
Receive Regenerator and Multiplexer Section Termination Registers J0_RSTR_C—J0 Expected String Control (0EH) J0_RSTR_D—J0 Expected String Data (0FH) WINSZ_SB2—Window Size for Setting ExcB2ErrSt (1C–1BH) CWIN_SB2—Consecutive Windows for Setting ExcB2ErrSt (1DH) E#_EXCWIN—Number of Errs/Win for Excessively Errored Window (1EH) WINSZ_C2—Window Size for Clearing ExcB2ErrSt (16–15H) CWIN_CB2—Consecutive Windows for Clearing ExcB2ErrSt (17H) E#_NEXCWIN—Number of Errs/Win for Non-Excessively Errored Window (18H) B2_BLKCNT—B2 Block Error Counter (11–10H) B2_BIPCNT—B2 BIP Error Counter (14–12H) MR_BLKCNT—MST REI Block Error Counter (0A–09H) MR_BIPCNT—MST REI BIP Error Counter (0D–0BH) R_K1—Received K1 byte (00H) R_K2—Received K2 Byte (01H) R_S1—Received S1 byte (02H) R_NU1_8—Received Nu1_8 byte (03H) R_NU1_9—Received Nu2_8 byte (05H) R_NU2_8—Received Nu2_9 byte (06H) R_NU9_8—Received Nu9_9 byte (06H) R_NU9_9—Received Nu9_9 byte (08H)	95 96 96 96 97 97 97 97 97 98 98 98 98 98 99
Receive Multiplexer Section Protection Registers R_MSP_C—Receive MSP Configuration (20H) R_MSP_OP—Receive MSP Operational (21H). R_PROTK1—Received K1 byte on Protection Bus from Slave (22H). R_PROTK2—Received K2 byte on Protection Bus from Slave (23H).	100 100 101
Receive Multiplexer Section Adaptation Registers	101 102
Receive HighOrder Path Termination Registers	103

R_HPT_C1—Receive HPT Configuration 1 Register (80H) R_HPT_C2—Receive HPT Configuration 2 Register (81H) J1_RSTR_C—J1 Expected String Control Register (8AH) J1_RSTR_D—J1 Expected String Data Register (8BH) EXP_C2—Expected C2 byte Register (82H) R_C2—Received C2 byte Register (83H) R_K3—Received K3 byte Register (84H) R_HPT_RDI—Received HPT RDI Bits Register (85H) B3_ECNT—B3 Error Event Counter (87–86H) HPTREI_CNT—HPT REI Counter (89–88H)
Transmit Regenerator and Multiplexer Section Termination Registers. 10 T_RMST_OP1—Transmit RMST Operational 1 Register (30H)
Transmit Multiplexer Section Adaptation Registers
Transmit HighOrder Path Termination Registers. 17 T_SC_HPOH—Transmit Source Configuration for HPOH bytes (70H) 11 T_HPT_C—Transmit HPT Configuration (71H) 12 MP_TC2—Microprocessor Provided Transmit C2 Byte (72H) 12 MP_TK3—Microprocessor Provided Transmit K3 Byte (73H) 12 J1_TSTR_C—J1 Transmit String Control (75H) 12 J1_TSTR_D—J1 Transmit String Data (76H) 12
Interrupt Source Registers

SXT6051 STM-1/0 SDH Overhead Terminator

IS_RETIME—Receive Retiming Interrupt Source (A6H)	. 124
Interrupt Enable Registers IE_RG—Receive Regenerator Section Interrupt Enable (B0H) IE_RGMUX—Receive Regenerator and Multiplexer Section Interrupt Enable (B1H) IE_MUX—Receive Multiplexor Section Interrupt Enable (B2H) IE_PROT—Receive Protection Section Interrupt Enable (B3H) IE_A_HPT—Receive Adaptation and HPT Interrupt Enable (B4H) IE_HPT—Receive HPT Interrupt Enable (B5H) IE_RETIME—Receive Retiming Interrupt Enable (B6H) IE_XMT—Transmit Interrupt Enable (E1H)	126 126 126 126 126 126
Status Registers S_RG—Receive Regenerator Section Status (C0H). S_RGMUX—Receive Regenerator and Multiplexer Section Status (C1H). S_PROT—Receive Protection Section Status (C3H). S_A_HPT—Receive Adaptation and HPT Status (C4H). S_HPT—Receive HPT Status (C5H). S_AIS_PROT—Receive AIS & Protection Switch Status (D0H).	. 127 . 127 . 128 . 128 . 129
Testability	131
IEEE 1149.1 Boundary Scan Instruction Register and Definitions Boundary Scan Register Summary Information	. 132 . 132
Package Information	140
Glossary of terms	141

PIN ASSIGNMENTS AND SIGNAL DESCRIPTION

Figure 1: SXT6051 Pin Assignment

Table 1: Signal Description Nomenclature

Туре	Description			
I	Standard input signal			
0	Standard output signal			
I/O	Input and output signal			
TTLin ¹	Supports TTL input levels			
HiZ ¹	High Impedance			

 $^{1. \ \} Out \ and \ I/O \ signals \ indicate \ buffer \ strength. \ For example, HiZ-4ma \ indicates \ a \ high-impedance \ buffer \ capable \ of sourcing 4 ma.$

Table 2: Signal Description (Sheet 1 of 11)

	able 2: Signal Description (Sheet 1 of 11)					
Pin#	Name	Туре	Description			
	STM-0 Transmit/ Receive Serial Format					
159	DHPOSD	I TTLin	Positive B3ZS or NRZ Data Receive . Input for STM-0 data at 51.84 Mbit/s supplied by the STM-0 line interface unit.			
160	DHNEGD	I TTLin	Negative B3ZS Data Receive. Input for STM-0 data at 51.84 Mbit/s when B3ZS coding is used.			
161	DHICLK	I TTLin	Serial Data Clock Input . Receive STM-0 clock at 51.84 MHz provided by the external STM-0 line interface unit.			
206	MHPOSD	O HiZ-8ma	Positive B3ZS or NRZ Data Transmit . Output of STM-0 data at 51.84 Mbit/s; either NRZ or B3ZS			
205	MHNEGD	O HiZ-8ma	Negative B3ZS Data Transmit. Output of STM-0 data at 51.84 Mbit/s when B3ZS coding is used.			
204	MICLK	O HiZ-8ma	Serial Data Clock Output . The serial output clock of the multiplexer. This signal is to be used with the serial data MHPOSD and MHNEGD when needed.			
	ST	M1/STM-0 Trans	mit Receive Parallel Format			
172, 171, 170, 169, 168, 167, 166, 165	DHBDATA<7:0>	I TTLin	Parallel NRZ Data Receive. Parallel input data in STM-1 or STM-0 mode.			
173	DHBCLK	I TTLin	Parallel Data Clock Input . Parallel input data clock at either 19.44 MHz for STM-1 or 6.48 MHz for STM-0			
203, 202, 201, 200, 198, 197, 196, 195	MHBDATA<7:0>	O HiZ-4ma	Parallel NRZ Data Transmit. Parallel output data in STM-1 or STM-0 mode.			
194	MHBCLKO	O HiZ-8ma	Parallel Data Clock Output. Parallel output data clock at either 19.44 MHz for STM-1 or 6.48 MHz for STM-0.			

Table 2: Signal Description (Sheet 2 of 11)

Pin#	Name	Туре	Description			
	External References					
185	MFRMO	O HiZ-4ma	Internal TX Frame Alignment Output . This signal is synchronous with the multiplexer frame and is used to synchronize other transmitters. See Figures 12 and 13.			
186	MFRMI	I TTLin	External TX Frame Alignment Input. An 8 KHz signal used to align the start of a transmit multiplexer frame. If not needed, this input is grounded.			
163	LOS	I TTLin	Loss of Signal Input. Input from the Line Interface circuit that can be used either with a parallel interface or with a serial interface. Active High.			
187	MHICLK	I TTLin	Multiplexer System Serial Clock. An external STM-0 (51.84 MHz) reference frequency input for the multiplexer and can be used by the demultiplexer section during Blue Signal /AIS Signal generation.			
188	MHBCLKI	I TTLin	Multiplexer System Parallel Clock. An external STM-0 (6.48 MHz) or STM-1 (19.44 MHz) reference frequency input for the multiplexer and can be used by the demultiplexer section during Blue Signal /AIS Signal generation.			
86	MMFRMI	I TTLin	External Multiframe Alignment . A 2 KHz input signal (25% duty cycle) that can be used, in terminal mode only, to reset the internal H4 byte counter.			
192	MMSAJ1EN	O HiZ-2ma	Test Point For J1 Position on TX framed signal. Provided for testing purposes.			
191	MMSAPAYEN	O HiZ-2mA	Test point for Payload Enable on TX framed signal. Provided for testing purposes.			
113	DRETFRMI	I TTLin	Demultiplexer Receive Re-timing Frame . An 8 KHz pulse synchronous with DRETCLK, used by the receive re-timing function to synchronize the position of the VC3 or VC4 payload. It is always needed.			
112	DRETCLK	I TTLin	Demultiplexer Receive Re-timing Clock Synchronization. A parallel clock input at either 6.48 MHz (STM-0) or 19.44 MHz (STM-1). It is used to generate the clocking for the VC-3 or VC-4 container on DTBDATA<7:0> when the retiming function is enabled.			
	Serial Overhead Byte Access					
15	ТЅОН	I TTLin	Transmit RSOH and MSOH Serial Access. Input for serially sourced RSOH and MSOH transmit data. The data is clocked in synchronous to MMSPPCKO at 19.44 MHz for STM-1 and 6.48 MHz for STM-0.			
16	TSOHEN	O HiZ-4ma	Transmit RSOH and MSOH Serial Access Clock Enable. Used to enable clocking of RSOH and MSOH data at the TSOH input using MMSPPCKO.			

Table 2: Signal Description (Sheet 3 of 11)

Pin #	Name	Туре	Description
17	TSOHFR	O HiZ-4ma	Transmit RSOH and MSOH Serial Access Frame Position. This is an 8 KHz synchronization pulse indicating the start (MSB of A1) of the 72 bytes of STM-1 RSOH/MSOH or 24 bytes of STM-0 RSOH/MSOH input at TSOH. It is synchronous with MMSPPCKO.
137	RSOH	O HiZ-4ma	Receive RSOH and MSOH Serial Access. Serial output of received RSOH and MSOH data. The data is clocked out synchronous to DMSPPCKO at 19.44 MHz for STM-1 and 6.48 MHz for STM-0.
136	RSOHEN	O HiZ-4ma	Receive RSOH and MSOH Serial Access Clock Enable. Used to enable clocking of RSOH and MSOH data at the RSOH output using DMSPPCKO.
135	RSOHFR	O HiZ-4ma	Receive RSOH and MSOH Serial Access Frame Position. This is an 8 KHz synchronization pulse indicating the start (MSB of A1) of the 72 bytes of STM-1 RSOH/MSOH or 24 bytes of STM-0 RSOH/MSOH output at RSOH. It is synchronous with DMSPPCKO.
28	ТРОН	I TTLin	Transmit HPOH Serial Access. Input for serially sourced HPOH transmit data.
29	ТРОНСК	O HiZ-4ma	Transmit HPOH Serial Access Clock. Used to clock in the TPOH data at 19.44 clock for STM-1 or 6.48 MHz for STM-0.
31	TPOHEN	O HiZ-4ma	Transmit HPOH Serial Access Clock Enable . Used to enable TPOHCK clocking of TPOH input data.
30	TPOHFR	O HiZ-4ma	Transmit HPOH Serial Access Frame Position. This is an 8 KHz synchronization pulse indicating the start (MSB of J1) of the 9 bytes of HPOH input at TPOH. It is synchronous with TPOHCK.
122	RPOH	O HiZ-4ma	Receive HPOH Serial Access. Serial output of received HPOH data.
121	RPOHCK	O HiZ-4ma	Receive HPOH Serial Access Clock. Used to clock out the RPOH data at 19.44 clock for STM-1 or 6.48 MHz for STM-0.
119	RPOHEN	O HiZ-4ma	Receive HPOH Serial Access Clock Enable. Used to enable RPOHCK clocking of received RPOH data.
120	RPOHFR	O HiZ-4ma	Receive HPOH Serial Access Frame Position. This is an 8 KHz synchronization pulse indicating the start (MSB of J1) of the 9 bytes of HPOH input at RPOH. It is synchronous with RPOHCK.
177	BIOUT	O HiZ-2ma	B1 Error Output (BIP). This pin goes High when an error is detected by the regenerator section overhead. It is synchronous to DMSPPCK0.
124	B2OUT	O HiZ-2ma	B2 Error Output (BIP) This pin goes High when an error is detected by the terminal section overhead. It is synchronous to DMSPPCK0

Table 2: Signal Description (Sheet 4 of 11)

Pin #	Name	Туре	Description
114	B3OUT	0	B3 Error Output (BIP) This pin goes High when an error is
		HiZ-2ma	detected by the higher order path overhead. It is synchronous to RPOHCK.

Table 2: Signal Description (Sheet 5 of 11)

Pin #	Name	Туре	Description		
Configuration & Alarm Monitoring					
181	OOF	O HiZ-2ma	Out of Frame Indicator . Active High when framer enters in an out of frame state. Minimum pulse width is 125 us (1 frame).		
180	LOF	O HiZ-2ma	Loss of Frame Indicator . Active High when the framer enters a loss of frame state. Minimum pulse width is 125 us (1 frame).		
182	SD	O HiZ-2ma	Signal Degrade. State of register 21H bit 1> bit value.		
183	SF	O HiZ-2ma	Signal Fail. State of register C1H bit 5> bit value.		
179	AISRX	O HiZ-2ma	Receive AIS Signal Indicator . Indicates that an AIS has been detected in the received VC3 or VC4. Active High.		
184	SCRAMSEL	I TTLin	Scrambler Disable . This pin should be tied to Low during normal operation. Active High.		
176	STMMODE	I TTLin	Mode Select. Low selects STM-0, High selects an STM-1.		
	(Orderwire and Dat	a Byte Access Transmit Side		
18	TROW	I TTLin	Transmit RSOH E1 Orderwire. A 64 Kb/s data input for orderwire byte E1. Data is synchronized with TOWBYC and clocked by TOWC.		
19	TOWC	O HiZ-2ma	Transmit RSOH and MSOH Orderwire Clock. A reference clock output at 64 KHz to be used for transmit E1, E2 and F1 byte clocking.		
20	TMOW	I TTLin	Transmit MSOH E2 Orderwire. A 64 Kb/s data input for orderwire byte E2. Data is synchronized with TOWBYC and clocked by TOWC.		
21	TDOW	I TTLin	Transmit RSOH F1 Orderwire. A 64 Kb/s data input for orderwire byte F1. Data is synchronized with TOWBYC and clocked by TOWC.		
22	TOWBYC	O HiZ-2ma	Transmit RSOH and MSOH Orderwire Synchronization Signal. An 8 KHz signal used to byte synchronize the transmitted E1, F1 and E2 data streams.		
32	TPOW1	I TTLin	Transmit HPOH F2 Orderwire. A 64 Kb/s data input for orderwire byte F2. Data is synchronized with TPOWBYC and clocked by TPOWC.		
33	TPOW2	I TTLin	Transmit HPOH F3 Orderwire. A 64 Kb/s data input for orderwire byte F3 Data is synchronized with TPOWBYC and clocked by TPOWC.		
34	TPOWC	O HiZ-2ma	Transmit HPOH Orderwire Clock. A reference clock output at 64 KHz to be used for F2 and F3 transmit byte clocking.		

Table 2: Signal Description (Sheet 6 of 11)

Table 2. O	ignal Description (S	ineer o or rry	
Pin #	Name	Туре	Description
35	TPOWBYC	O HiZ-2ma	Transmit HPOH Orderwire Synchronization Signal. An 8 KHz signal used to byte synchronize the F2 and F3 transmit data streams.
23	TRD	I TTLin	Transmit RSOH D1-D3 Data. A 192 Kb/s data input for RSOH D1-D3 data. Data is clocked in by TRDC.
24	TRDC	O HiZ-2ma	Transmit RSOH D1-D3 Data Clock. A 192 KHz reference signal used to clock in TRD data.
25	TMD	I TTLin	Transmit MSOH D4-D12 Data. A 576 Kb/s data input for MSOH D4-D12 data. Data is clocked in by TMDC.
26	TMDC	O HiZ-2ma	Transmit MSOH D4-D12 Data Clock. A 576 KHz reference signal used to clock in TMD data.
	Ord	erwire and Data	Byte Access Receive Side
133	RROW	O HiZ-2ma	Receive RSOH E1 Orderwire. A 64 Kb/s data output for received orderwire byte E1. Data is synchronized with ROWBYC and clocked by ROWC.
132	ROWC	O HiZ-2ma	Receive RSOH and MSOH Orderwire Clock. A reference clock output at 64 KHz to be used for receive E1, E2 and F1 byte clocking.
131	ROWBYC	O HiZ-2ma	Receive RSOH and MSOH Orderwire Synchronization Signal. An 8 KHz signal used to byte synchronize the received E1, E2 and F1data streams.
130	RMOW	O HiZ-2ma	Receive MSOH E2 Orderwire. A 64 Kb/s data output for received orderwire byte E2. Data is synchronized with ROWYC and clocked by ROWC.
129	RDOW	O HiZ-2ma	Receive MSOH F1 Orderwire. A 64 Kb/s data output for received orderwire byte F1. Data is synchronized with ROW-BYC and clocked by ROWC.
118	RPOW1	O HiZ-2ma	Receive HPOH F2 Orderwire. A 64 Kb/s data output for received orderwire byte F2. Data is synchronized with RPOWBYC and clocked by RPOWC
117	RPOW2	O HiZ-2ma	Receive HPOH F3 Orderwire. A 64 Kb/s data output for received orderwire byte F3. Data is synchronized with RPOWBYC and clocked by RPOWC
116	RPOWC	O HiZ-2ma	Receive HPOH Orderwire Clock. A reference clock output at 64 KHz to be used for F2 and F3 receive byte clocking.
115	RPOWBYC	O HiZ-2ma	Receive HPOH Orderwire Synchronization Signal. An 8 KHz signal used to byte synchronize the F2 and F3 receive data streams.
128	RRD	O HiZ-2ma	Receive RSOH D1-D3 Data. A 192 Kb/s data output for RSOH D1-D3 data. Data is clocked out by RRDC.
127	RRDC	O HiZ-2ma	Receive RSOH D1-D3 Data Clock. A 192 KHz reference signal used to clock out RRD data.

Table 2: Signal Description (Sheet 7 of 11)

Pin #	Name	Туре	Description						
126	RMD	O HiZ-2ma	Receive MSOH D4-D12 Data. A 576 Kb/s data output for MSOH D4-D12 data. Data is clocked out by RMDC.						
125	RMDC	O HiZ-2ma	Receive MSOH D4-D12 Data Clock. A 576 KHz reference signal used to clock out RMD data.						
	Telecom Bus Interface								
66, 67, 68, 69, 70, 71, 72, 73	MTBDATA<7:0>	I TTLin	Multiplexer Telecom Bus Data. A byte-wide data input at 19.44 Mbit/s for STM-1 or 6.48 Mbit/s for STM-0. Non-payload byte timeslots (i.e., RSOH, AU pointer, MSOH and HPOH timeslots) can either have a 0 or 1 inserted.						
74	MTBPAR	I TTLin	Multiplexer Telecom Bus Parity . This is a parity check calculated on each MTBDATA<7:0> byte. It is an odd parity.						
75	MTBCKI	I TTLin	Multiplexer Telecom Bus Clock Input. A 6.48MHz (STM-0) or 19.44 MHz (STM-1) input signal used to clock MTB-DATA<7:0>. It is used when the SXT6051 is configured as an ADM. In other configurations the pin should be tied to ground.						
76	МТВСКО	O HiZ-8ma	Multiplexer Telecom Bus Clock Output. A 6.48MHz (STM-0) or 19.44 MHz (STM-1) output signal. It is used when the SXT6051 is used in a Terminal configuration.						
77	MTBJ0J1EN	I/O TTLin-4ma	Multiplexer Telecom Bus Frame Indicator. It indicates the presence of J0 and J1 bytes on the transmit bus. In an ADM configuration the pin is set up as an input while in the terminal mode it is set up as an output.						
78	MTBTUGEN1	O HiZ-4ma	Multiplexer Telecom Bus Payload Enable 1. Indicates the presence of TUG3#1 in the case of STM-1. In the case of STM-0 this pin is internally pulled High. In ADM it is not used.						
79	MTBTUGEN2	O HiZ-4ma	Multiplexer Telecom Bus Payload Enable 2. Indicates the presence of TUG3#2 in the case of STM-1. In the case of STM-0 this pin is internally pulled High. In ADM it is not used.						
80	MTBTUGEN3	O HiZ-4ma	Multiplexer Telecom Bus Payload Enable 3. Indicates the presence of TUG3#3 in the case of STM-1. In the case of STM-0 this pin is internally pulled High. In ADM it is not used.						
81	MTBPAYEN	I/O TTLin-4ma	Multiplexer Telecom Bus Payload Enable Signal. Indicates the presence of VC-4 in the STM-1 mode or VC-3 in the STM-0 mode. This signal is used as an output when the SXT6051 is configured in a Terminal mode and an input in ADM mode.						
82	MTBH4EN	TTLin-4ma	Multiplexer Telecom Bus H4 Multi-Frame Indicator. As an output, it is a 2 KHz signal that indicates the location of the 00 value of H4. The signal goes High after H4 equals "00" and Low after H4 equals" 01". Used as an output when the SXT6051 is configured in a Terminal Mode. As an input (in ADM) it is sampled at the J1 byte location.						

Table 2: Signal Description (Sheet 8 of 11)

Pin #	Name	Туре	Description
103, 102, 101, 100, 99, 98, 97, 96	DTBDATA<7:0>	O HiZ-4ma	Demultiplexer Telecom Bus Data . This is a byte wide data output at 19.44 Mb/s for STM-1 or 6.48 Mb/s for STM-0. The RSOH, MSOH and HPOH values are present on the bus when receive re-timing is disabled (see register 51H).
94	DTBPAR	O HiZ-4ma	Demultiplexer Telecom Bus Parity. A parity check calculated on each output byte on the Telecom Bus. It is an odd parity.
93	DTBCK	O HiZ-8ma	Demultiplexer Telecom Bus Clock Output . A 6.48MHz (STM-0) or 19.44 MHz (STM-1) output signal.
92	DTBJ0J1EN	O HiZ-4ma	Demultiplexer Telecom Bus Frame Indicator . It indicates the presence of J0 and J1 bytes on the receive telecom bus.
91	DTBTUGEN1	O HiZ-4ma	Demultiplexer Telecom Bus Payload Enable 1. Indicates the presence of TUG3#1 in the case of STM-1. In the case of STM-0 this pin is internally pulled High.
90	DTBTUGEN2	O HiZ-4ma	Demultiplexer Telecom Bus Payload Enable 2. Indicates the presence of TUG3#2 in the case of STM-1. In the case of STM-0 this pin is internally pulled High.
89	DTBTUGEN3	O HiZ-4ma	Demultiplexer Telecom Bus Payload Enable 3. Indicates the presence of TUG3#3 in the case of STM-1. In the case of STM-0 this pin is internally pulled High.
88	DTBPAYEN	O HiZ-4ma	Demultiplexer Telecom Payload Enable. Indicates the presence of VC-4 in the STM-1 mode or VC-3 in the STM-0 mode.
87	DTBH4EN	O HiZ-4ma	Demultiplexer Multi-Frame Indicator. A 2 KHz signal that indicates a value of "00" for H4.
	Mul	tiplexer/Demult	iplexer Protection Interface
9, 8, 7, 6, 5, 4, 3, 2	MMSPPDATA<7:0>	I/O TTLin-4ma	Multiplexer Protection Data Bus. This is byte wide data at 19.44 Mb/s for STM-1 or 6.48 Mb/s for STM-0. It is an output when the SXT6051 is a Master in a 1-for-1 protection. It is an input when the SXT6051 is a Slave in a 1- for-1 protection.
11	MMSPPCKI	I TTLin	Multiplexer Protection Clock. A 6.48MHz (STM-0) or 19.44 MHz (STM-1) input signal used to clock MSPPDATA<7:0>. This input is only used when the SXT6051 is configured as Slave in a 1-for-1 protection.
12	MMSPPCKO	O HiZ-8ma	Multiplexer Protection Clock A 6.48MHz (STM-0) or 19.44 MHz (STM-1) output signal used to clock MSPPDATA<7:0>. This output is used when the SXT6051 is configured as Master in a 1-for-1 protection. This clock is also used to clock the TSOH serial data stream.
13	MMSPPJ0EN	I/O TTLin-4ma	Multiplexer Protection Frame Indicator An 8 KHz pulse that indicates the presence of the J0 byte on MMSPPDATA<7:0> bus. The pin is programmed as an input in a Slave configuration and an output in a Master configuration.

Table 2: Signal Description (Sheet 9 of 11)

	gnal Description (<u>'</u>			
Pin #	Name	Туре	Description		
10	MMSPPAUEN	O HiZ-4ma	Multiplexer Protection Payload Enable. Indicates the presence of the VC-4 (in STM-1 mode) or VC-3 (in STM-0 mode) on the MMSPPDATA<7:0> bus. This pin is only used in a Master configuration.		
147, 148, 149, 150, 151, 152, 153, 154	DMSPPDATA<7:0>	I/O TTLin-4ma	Demultiplexer Protection Data Bus. This is byte wide data at 19.44 MHz (STM-1) or 6.48 MHz (STM-0). It is an input in a Master configuration and an output in a Slave configuration.		
144	DMSPPCKI	I TTLin	Demultiplexer Protection clock . A 6.48 MHz (STM-0) or 19.44 MHz (STM-1) signal used to clock DMSPPDATA<7:0>. This input is only used in a Master configuration.		
145	DMSPPCKO	O HiZ-8ma	Demultiplexer Protection clock . A 6.48 MHz (STM-0) or 19.44 MHz (STM-1) signal used to clock DMSPPATA<7:0> in a Slave configuration or to clock the RSOH serial output data in a master configuration.		
143	DMSPPJ0EN	I/O TTLin-4ma	Demultiplexer Protection Frame Indicator. An 8 KHz pulse that indicates the presence of the J0 byte on the DMSPPDATA<7:0> bus. The pin is programmed as an output in a Slave configuration and an input in a Master configuration.		
142	DMSPPAUEN	I/O TTLin-4ma	Demultiplexer Protection Payload Enable. Indicates the presence of VC-4 (STM-1) or VC-3 (STM-0) data on the DMSPPDATA<7:0> bus. This pin is programmed as an output in a Slave configuration and an input in a Master configuration.		
141	DMSPPSF	I/O TTLin-2ma	Signal Fail Indicator. This pin is programmed as an input in a Master configuration and as an output in a Slave configuration. In the Master configuration the value of this pin is reflected in register C3H bit 3>. In the Slave configuration the value of this pin is the same as C1H bit 5>.		
140	DMSPPSD	I/O TTLin-2ma	Signal Degrade Indicator. The pin is programmed as an input in a Master configuration and an output in a Slave configuration. In the Master configuration the value of this pin is reflected in register C3H bit 2>. In the Slave configuration the value of this pin is the same as 21H bit 1>.		

Table 2: Signal Description (Sheet 10 of 11)

	ignal Description (S	•						
Pin #	Name	Туре	Description					
Microprocessor Bus								
48, 49, 50, 51, 54, 55, 56, 57	A<7:0>	I TTLin	Address Bus . Eight bit address port for register selection during read/write accesses.					
39, 40, 41, 42, 43, 44, 45, 46	DATA<7:0>	I/O TTLin-6ma	Data Bus. Eight bit I/O to read and write data, commands, and status to and from the device.					
60	WR	I TTLin	Intel Write Strobe. Signal is Low during write accesses. DATA<7:0> is clocked into the addressed register on the rising WR edge when CS is Low.					
	RW		Motorola Read/Write Strobe. The SXT6051 drives DATA<7:0> with the contents of the addressed register when $\overline{\text{CS}}$ is Low and both $\overline{\text{RW}}$ and E are High. The contents of DATA<7:0> are clocked into the addressed register on the falling E edge when both $\overline{\text{CS}}$ and RW are Low.					
61	RD	I TTLin	Intel Read Strobe. Signal is Low during read accesses. The SXT6051 drives DATA<7:0> with the contents of the addressed register when both $\overline{\text{RD}}$ and $\overline{\text{CS}}$ are Low.					
	Е		Motorola Bus Enable Strobe. Signal is High during SXT6051 register accesses.					
63	INT	O Hiz-4ma	Interrupt Request . Signal is Low when there is an unmasked active interrupt.					
58	CS	I TTLin	Chip Select . Active Low chip select that must be asserted during all register accesses.					
59	AS	I TTLin	Address Strobe Enable . Used by chip for systems where the address and data are multiplexed. Latches A<7:0> on the falling edge. If address and data are not multiplexed, this pin should be tied High.					
64	MCUTYPE	I TTLin	Motorola/Intel Interface Select . A High indicates a Motorola and a Low an Intel Microprocessor.					
62	RST	I TTLin (48 K pull up)	Chip Master Reset. A Low resets all registers to default conditions.					
155	OEN	I TTLin (48K pull up)	Master Chip Output Enable. A Low on this pin causes all I/O and outputs to be High impedance.					

Table 2: Signal Description (Sheet 11 of 11)

Table 2. Signal Description (Sheet 11 of 11)								
Pin #	Name	Туре	Description					
JTAG test ports								
110	JTCK	I TTLin	JTAG Clock. Clock for all boundary scan circuitry.					
109	JTMS	I TTLin (48K pull up)	Test Mode Select. Determine state of TAP controller.					
108	JTRS	I TTLin (35K pull down)	Reset. Active Low.					
107	JTDI	I TTLin (48K pull up)	Data Input . Input signal used to shift in instructions and data.					
106	JTDO	O 2mA	Data Output . Output signal used to shift out instructions and data.					
Scan inpu	ıt pins							
158	SCANTEST	I TTLin (48 K pull up)	Scan test mode. Active Low.					
111	SCANEN	I TTLin (48K pull up)	Scan Enable. Active Low.					

Table 3: Power, Ground, and No Connects

Pin #	Name	Туре	Power Supply
14, 38, 52, 65, 95, 105, 134, 156, 178, 208	VCC_5		5V Supply.
1, 27, 47, 53, 83, 104, 123, 146, 157, 199	GND_5		GND 5 Volts. Ground pins for 5 Volt supply.
36, 84, 139, 175, 193	VCC_3		3 V supply.
37, 85, 138, 174, 190	GND_3		GND 3 Volts. Ground pins for 3 Volt supply.
162, 164, 189, 207	NC		Not Connected. Unused. Leave unconnected.

FUNCTIONAL DESCRIPTION

Transmit Data Flow

Figure 2 shows the functional blocks of the SXT6051. For the transmitter (lower half of the diagram), the input interface is the Multiplexer Telecom Bus with byte wide data MTBDATA <7:0> and timing signals for the parallel clock MTBCK, the frame indicator MTBJ0J1EN, and the payload active signal MTBPAYEN. The MTBPAR signal provides parity checking on the MTBDATA <7:0> byte data.

The data flow starts with the Higher Order Path Termination section which adds the VC-3 or VC-4 path overhead:

- The 16 or 64 byte J1 string is sourced from the microprocessor programmable registers or TPOH input. The microprocessor must calculate the CRC7 byte of the 16 byte J1 transmit string and store it in the first byte of the registers storing the string.
- The B3 byte is calculated internally and inserted. The microprocessor can invert the values of B3 for system testing purposes.
- The C2 byte is sourced from the microprocessor programmable register or TPOH input.
- The G1 byte is sourced from the microprocessor programmable register, TPOH input, or from the receive portion of the chip if automatic RDI and REI insertion is enabled by the microprocessor
- The F2 and F3 bytes are two 64 Kbit/s channels sourced from TPOW1 and TPOW2 or the received F2 and F3 bytes. TPOWC (at 64 KHz) and TPOWBYC (at 8 KHz) provide the timing references for these channels.
- The K3 byte is sourced from the microprocessor programmable register or TPOH input.

After the HPOH data has been added, the Higher Order Connection Supervision block can insert an "unequipped" payload if configured by the microprocessor to do so (see registers 70H and 71H).

Pointer processing re-timing is performed by the Multiplexer Section Adaptation (MSA) section. Positive and negative pointer movement events are stored in counters that can be accessed via the microprocessor interface. The resulting parallel data stream is supplied to the Multiplexer Section Termination (MST) and to the Multiplexer Section Protection (MSP) port if it is configured as a protection master. The data MMSPPDATA <7:0>, along with timing information, is sent to the redundant (slave) SXT6051.

Thus both transmitters are synchronous in a 1-for-1 hot stand-by configuration.

Next, the MST function adds the Multiplexer Section OverHead (MSOH):

- The K1 and K2 bytes are sourced from the microprocessor programmable register or TSOH input. In the particular case of K2, an internal process inserts the MS-RDI bits (K2<2:0>) based on the receive information if automatic MS-RDI insertion is enabled by the microprocessor.
- The D4-D12 bytes are sourced from the TMD input or received D4-D12 bytes in ADM mode. A 576 KHz reference clock is supplied at TMDC.
- S1 is sourced from the microprocessor programmable register or TSOH input.
- M1 is sourced from the TSOH input or an internal process that sets M1 based on the receive B2 byte(s) errors from the receive portion of the SXT6051 if automatic MS-REI insertion is enabled by the microprocessor.
- E2 is sourced from the TMOW input or, in ADM mode, received E2 byte. A 64 KHz reference clock is supplied at TROWC and an 8 KHz sync pulse at TROWBYC.
- The B2 byte is calculated internally and inserted. The microprocessor can invert the values of B2 for system testing purposes.

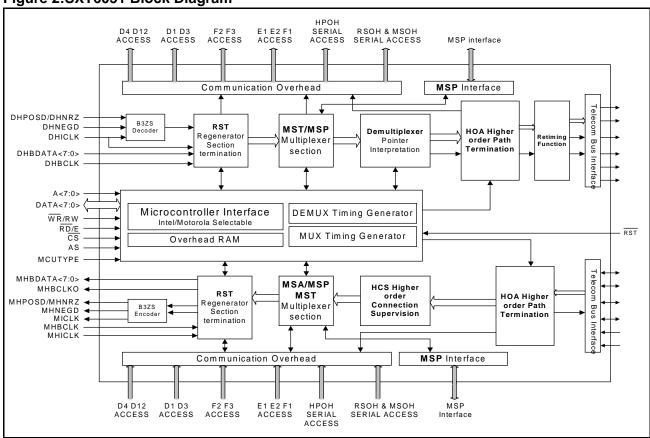
Finally, the Regenerator Section OverHead (RSOH) is added by the Regenerator Section Termination (RST).

- J0 byte is sourced from the microprocessor, TSOH input or received J0 byte. The microprocessor must calculate the CRC7 byte of the J0 transmit string and store it in the first byte of the registers storing the string.
- The B1 byte is calculated internally and inserted. The microprocessor can invert the values of B1 for system testing purposes.
- E1 is sourced from the TROW input or, in ADM mode, received E1 byte. A 64 KHz reference clock is supplied at TROWC and an 8 KHz sync pulse at TROWBYC.

- F1 is sourced from the TMOW input or, in ADM mode, received F1 byte. A 64 KHz reference clock is supplied at TROWC and an 8 KHz sync pulse at TROWBYC.
- D1-D3 are sourced from the TRD input or, in ADM mode, received D1-D3 bytes. A 192 KHz reference clock is supplied at TRDC.

Finally, the data is scrambled with a configured scrambler type and framing bytes A1/A2 are added. The scrambler has a selectable length of seven to comply with ITU specifications, or 11 or 13 for radio applications. The polynomial functions are 1+X6+X7 for the seven-bit scrambler, 1+X9+X11 for the 11-bit scrambler and 1+X8+X9+X12+X13 for the 13-bit scrambler. The 13-bit scrambler is recommended for STM-1 radio applications. The scrambler selection that can be programmed via the microprocessor interface.

For STM-1, and optionally STM-0, the data is output on the byte parallel bus MHBDATA<7:0> synchronous with the MHBCLKO clock. In STM-0, the output can also be converted from parallel to serial and emitted as NRZ data on


MHPOSD, or output as B3ZS encoded data on MHPOSD and MHNEGD. The output selection is configurable via the microprocessor.

Receive Data Flow

STM-1 data is input on the parallel DHBDATA<7:0> bus (see Figure 2). The parallel clock input is DHBCLK. STM-0 data and clock signals can be entered as parallel data like STM-1, or as serial NRZ data on DHPOSD, or as B3ZS encoded data on DHPOSD and DHNEGD. The B3ZS inputs are decoded and the resulting NRZ data converted to parallel format. The serial clock input is DHICLK.

The parallel data is then fed to the framing and de-scrambling block. The framing block synchronizes the timing generator to the incoming data and provides Out Of Frame and Loss Of Frame alarm signals. These alarms are based on frame counts that can be programmed via the microprocessor interface, as the ITU specifications are unclear at this time.

Figure 2:SXT6051 Block Diagram

After frame synchronization and de-scrambling, the Regenerator Section Termination (RST) extracts the RSOH:

- The expected value of the J0 string is stored via the microprocessor interface. The received J0 string is compared with the stored version, and also used to calculate a CRC-7 byte. Two alarms can be generated: a J0 (Trace ID) Mismatch alarm and J0 CRC-7 mismatch alarm.
- B1 byte is calculated internally and compared to the incoming B1 value. The errors are stored into a set of counters that can be read by the microprocessor interface.
- E1 is provided serially at the RROW output.
- F1 is provided serially at the RMOW output. E1 and F1 are synchronous and can be accessed using the 64 KHz clock provided at RROWC and the 8 KHz synchronization pulse provided at RROWBYC.
- D1-D3 are provided serially at the RRD output. The 192 KHz clock reference for this output is provided at RRDC.

Next the Multiplexer Section Termination (MST) extracts the MSOH:

- K1 and K2 bytes are provided via both a microprocessor register and serially at the RSOH output. A filter based on 3 consecutive identical values of K1 and K2 gates the update of the microprocessor registers.
- D4-D12 bytes are provided serially at the RMD output. The 576 KHz clock reference for this output is provided at RMDC.
- S1 is provided via both a microprocessor register and serially at the RSOH output. A filter based on 3 consecutive identical values of S1 gates the update of the microprocessor register.
- M1 is provided serially at the RSOH output and updates MST REI counters accessible by the microprocessor.
- E2 is provided serially at the RMOW output. The 64 KHz clock reference for this output is provided at RROWC and the 8 KHz sync pulse at RROWBYC.
- B2 byte is calculated internally and compared to the incoming B2 value. The errors are stored into a set of counters that can be read by the microprocessor interface. These errors are also inserted in the transmitted M1 byte if enabled (see register 60H).

The Multiplexer Section Protection (MSP) block allows the selection of data presented to the Master Multiplexer Section Adaptation (MSA) block to come from either the "Master MST output data" or "Slave MSP output data" (see figure 6 or section on page 31). The choice is completely under the control of the microprocessor. The microprocessor has access to all the Master and Slave data (K1/K2 bytes, error statistics derived from counters and alarm status from both chips) necessary for making this decision.

The MSA block interprets the H1-H3 payload points bytes to determine the location of the VC-3 or VC-4 payload structure. Positive and negative pointer movement events are stored in counters that can be accessed via the microprocessor interface. The data from the MSA section is then output to the HPT section in a byte parallel format.

The HPT section extracts the HPOH:

- The expected value of the 16 on 64 byte J1 string is stored internally via the microprocessor interface. The receive value of J1 is compared with the stored version, and is also used to calculate a CRC-7 byte (in 16 byte string configuration). Two alarms are generated: a J1 Mismatch alarm and J1 CRC-7 mismatch alarm.
- B3 byte is calculated internally and compared to the incoming B3 value. The errors are stored into a set of counters that can be read by the microprocessor interface. These errors are also inserted in the transmitted G1 REI bits (G1<7:4>) if enabled (see registers 70H and 71H).
- F2 and F3 are provided serially at the ROW1 and ROW2 outputs. The 64 KHz clock reference for this output is provided at RPOWC and the 8 KHz sync pulse at RPOWBYC.
- C2 is provided via both a microprocessor register and serially at the RPOH output. The C2 value provided via a microprocessor register is filtered over 3 or 5 frames. The number of filtering frames can be programmed by the microprocessor.
- G1 is provided serially at the RPOH and is used to update HPTREI-CNT registers accessible by the microprocessor.
- K3 is provided via both a microprocessor register and serially at the RPOH output.

The last block is the re-timing block. This block allows the alignment of the receive payload with the external signal DRETFRMI, which supplies the J0 position and an external clock DRETCLK. A new value of the pointer based on the new alignment position is assigned to the payload. This block typically is bypassed for a multiplexer application. It is typically only required for external re-timing and alignment of multiple TUG-3 payload signals.

The output of this block is then sent to the Receive Telecom Bus DTBDATA<7:0> with the DTBCLK clock and reference timing DTBJ0J1EN and DTBPAYEN.

Reference Clocks

The transmit and the receive side of the SXT6051 operate independently. In the STM-0 case, the input and output can either be serial or parallel. In the STM-1 case, the input and output are parallel only. The following table shows the clock connections required for STM-1 and STM-0:

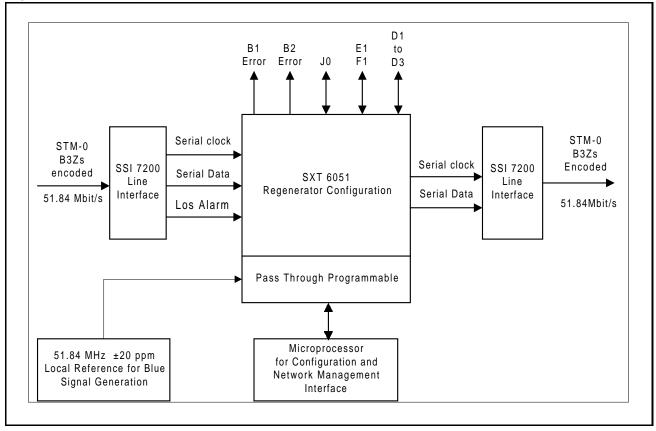
Modes of Operation

Chip Configuration

The SXT6051 can be programmed in seven different configurations in STM-0 or STM-1 mode (see register 50H.)

- · Repeater mode
- Terminal Mode No Protection
- Terminal Mode Protection Main

- Terminal Mode Protection Slave
- Add And Drop Mode No Protection
- Add And Drop Mode Protection Main
- Add And Drop Mode Protection Slave


Note that the following are examples of configurations. For more details, please refer to AN9801: SXT6051 & SXT6251 SDH Chipset.

Repeater Mode Configuration

All MSOH, HPOH and VC data is passed through internally and no off chip connection is required between the transmit and the receive sides. The transmit source of the RSOH bytes is configurable (see register 60H).

Figure 3 is an example of an STM-0 repeater using the serial interface. The timing is recovered by the high-speed line interface unit and passed to the transmit side via the SXT6051. In the event of a receiver failure (i.e., a LOS of Signal Alarm), the SXT6051 will switch to a Blue signal reference if so configured (see register 40H).

Figure 3: STM-0 Repeater Application

Table 4: Repeater Clocks

	STM-0	STM-1
Multiplexer serial clock input	MHICLK (51.84 MHz)	Not used
Multiplexer paral- lel clock input	MHBCLK (6.48 MHz)	MHBCLK (19.44 MHz)
Demultiplexer serial clock input	DHICLK (51.84 MHz)	Not used
Demultiplexer parallel clock input	DHBCLK (6.48 MHz)	DHBCLK (19.44 MHz)

Terminal Mode Configuration (No

tion is implemented on the receive side.

Protection)

1. DRETFRMI and DRETCLK are used when a re-timing func-

In Figure 4 the SXT6051 is used with the SXT6251 for the implementation of an STM-1 terminal multiplexer. The SXT6251 is a 21 E1 mapper designed to accommodate 21 E1 tributaries in a single chip. The SXT6051 and the SXT6251 communicate via the Telecom Bus. In an STM-0 configuration a single 21 E1 multiplexer is required. In an STM-1 terminal multiplexer, three 21 E1 mappers are required, sharing the telecom bus to implement a full 63xE1 MUX Telecom bus.

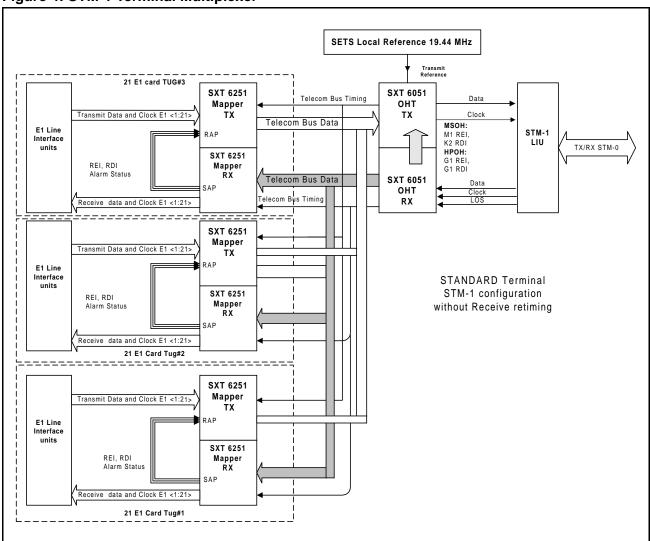
Receive Side Telecom Bus Timing Source

In the Terminal mode, when receive re-timing is disabled (see register 51H), the receive side telecom bus timing is derived from the "recovered" clock.

Assuming an inactive LOS, the "recovered" clock is derived from DHICLK in serial mode and DHBCLK in parallel mode. During an active LOS condition, if configured (see register 40H), the "recovered" clock is derived from MHICLK in serial mode and MHBCLKI in parallel mode (used as "blue" clocks).

When receive re-timing is enabled, the receive side telecom bus timing is derived from the re-timing clock (DRETCLK).

This arrangement of the SXT6051 providing both timing and data (at the receive telecom bus) is referred to as co-directional timing.

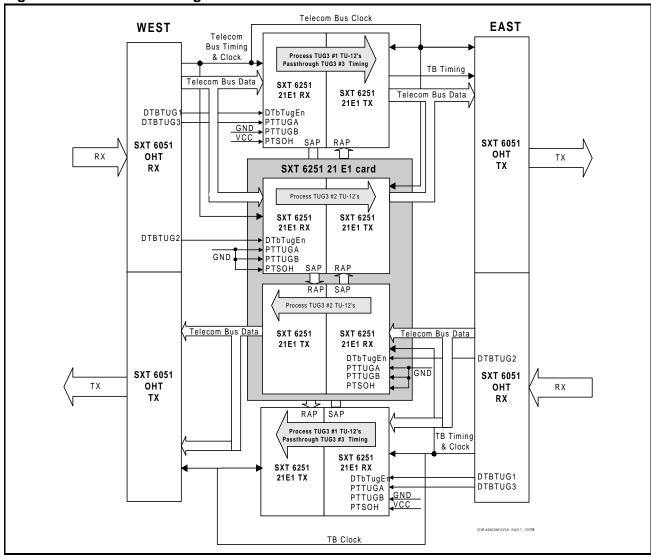

Transmit Side Telecom Bus Timing Source

The transmit side telecom bus timing is provided by the SXT6051. It is derived from the local clock reference (MHICLK in serial mode and MHBCLKI in parallel mode). This arrangement of the SXT6051 providing the timing and receiving the data (at the transmit telecom bus) is referred to as contra-directional timing.

Figure 4: STM-1 Terminal Multiplexer

Add and Drop Configuration

In Figure the SXT6051 is used with the SXT6251 for the implementation of an STM-1 Add/Drop multiplexer with 42 E1 access (63 is possible with the addition of another SXT6251).


Receive Side Telecom Bus Timing Source

Receive side telecom bus timing in the ADM case is identical to the terminal case.

Transmit Side Telecom Bus Timing Source

In an ADM configuration, the transmit side telecom bus timing is provided to the SXT6051. Therefore the timing at the transmit telecom bus is co-directional, since both timing and data are provided to the SXT6051.STM-1 ADM Configuration With 42 E1 Access

Figure 5: STM-1 ADM Configuration With 42 E1 Access

Updating the Transmit AU Pointer Justification Event Counters

If the re-timing function on the receive side is disabled, re-clocking by the local clock will occur on the transmit side of the SXT6051. If the receive and local (which generates the transmit clock) clocks are slightly different, pointer movements on the transmit side of the SXT6051 will be generated. These pointer movements will be reflected in the transmit AU pointer justification event counters.

If the re-timing function is enabled, re-clocking will take place on the receive side. Similarly, if the receive and the local (which generates DRETCLK and transmit clock) clocks are slightly different, pointer movements are again generated on the *transmit* side of the SXT6051 and reflected in *transmit* AU pointer justification event counters.

Terminal Protection Mode

Figure describes the dataflow for a 1-for-1 terminal protection configuration. The protection mode is an implementation of the ITU specifications in 1-for-1 configuration.

The SXT6051 can be used either in the main (master) or the redundant (slave) signal path. The master & slave signal paths are connected via the MSP bus.

In the master configuration the SXT6051 is connected to the SXT6251 via the telecom bus in both the transmit and the receive directions.

In the slave configuration the SXT6051 is indirectly connected to the SXT6251 via the MSP bus in both the transmit and the receive directions.

Receive Side Telecom Bus Timing Source

On the receive side, the master SXT6051 selects the data from either its receive MST block or its receive MSP bus (fed by the slave) and presents this selection using a co-directional timing arrangement at the receive telecom bus interface. If the MSP (slave) data is selected (i.e., the protection switch is active, see register 21H) the clock provided at the receive telecom bus will be derived from either DMSPPCKI (demultiplexer protection clock) or, if retiming is enabled, DRETCLK (demultiplexer retiming clock, see register 51H).

Transmit Side Telecom Bus Timing Source

On the transmit side, the master SXT6051 feeds the data received from its transmit telecom bus to both its MST block and MSP block (which feeds the slave) using a contra-directional timing arrangement at the transmit telecom bus interface.

Co-directional timing arrangement is used in both the receive and transmit directions at the MSP interface.

Receiver Default Operation

Figure 7 is a block diagram of the receive section of the SXT6051. The detailed description follows the data flow from left to right and describes the functionality and configuration of each block. Note that all status change alarms, counter overflow alarms and receive byte change alarms mentioned, can cause the INT output pin to be activated if they are unmasked. Please refer to the register definition for location of alarms, masks & interrupts.

Serial Interface

The serial interface block accepts an STM-0 input as a B3ZS encoded or NRZ signal. The B3ZS signal is input at DHPOSD and DHNEGD and the NRZ signal is input at DHPOSD. The 51.84 MHz clock is input at DHICLK.

A bipolar violation detector has been implemented in the B3ZS decoder. Detection of a BPV is indicated in register A0H. Note that the selection (see register 50H) of the serial interface and B3ZS encoder and decoder is common to both the transmit and receive sides of the chip.

A filter for the LOS input is provided by the line interface circuit (register 40H). The filtering on the LOS can be integrated over 128 or 4096 clock cycles. A LOS status change is indicated in register A0H.

Parallel Interface

The parallel interface block accepts a byte format input at DHBDATA<7:0> in STM-0 or STM-1 mode. No specific order on the byte is required for the SXT6051 to operate. The parallel clock is input at DHBCLK. As in the serial case, the selection (see register 50H) of a parallel interface is common between transmit and receive sides.

A filter for the LOS input is provided by the line interface circuit. The filtering on the LOS can be integrated over 16 or 512 clock cycles. An LOS status change is indicated in register A0H.

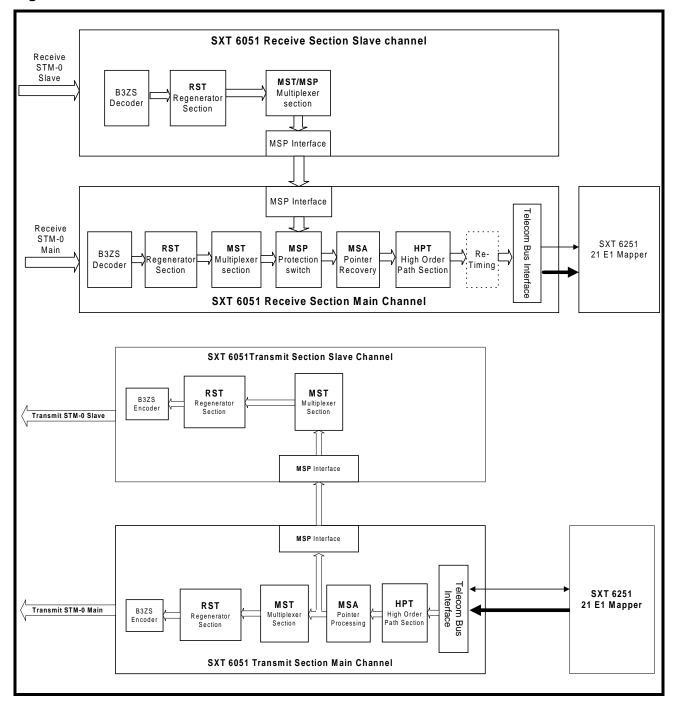


Figure 6:Terminal Protection Mode Data Flow

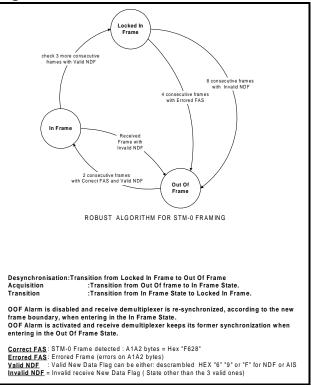
LOF 30F RSOH Interface DHICLK Serial Interface MSP block Multiplexer section Regenerator Section Framer receive DHBDATA[7..0] Parallel Interface DHBCLK Pointer processing Clock MHICLK distribution and AISRX MHBCLKI references RPOW1 RPOW2 RPOWC RPOWBYC B3OUT ROPHFR RPOHEN RPOHCK DTBH4EN DTBPAYEN DTBTUGEN 1 TO 3 DTR IN ITEN Retiming DTRPAR Function DHBDATAI7..01 Receive side SXT 6051

Figure 7:SXT6051 Receiver Blocks

Clock Distribution and Reference

Two separate inputs are supplied for Blue clock references.

- MHICLK is used for a serial reference clock in the case of an STM-0 system. The frequency of a serial reference clock is 51.84 MHz ±20ppm
- MHBCLKI is used for a parallel reference clock in the case of either an STM-0 or an STM-1 system. The frequency of the parallel reference clock for STM 0 is 6.48 MHz ±20ppm and for STM-1 19.44MHz ±20ppm


An active LOS can have two consequent actions that can be enabled or disabled (see register 40H):

- Clock switches from receive clock to reference clock
- Insert AIS towards the PDH network from the RST section

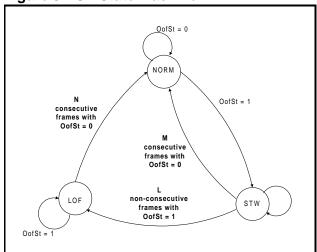
Framer

The framer operates on either a parallel byte or a serial bit stream. Two settings are available for the frame acquisition state machine. One follows ITU-T G.783; the other is shown in Figure 8.

Figure 8:STM-0 Robust Frame State Machine

Frame Acquisition Algorithm

The frame acquisition algorithm is done on byte-wide key word identification. The framer eliminates the eight phases (bits) of ambiguity and memorizes the position of the frame word. The framer also identifies the position of the new data flag (NDF).


Two consecutive frames with correct frame words and identical NDF are required to change from an Out Of Frame State (OOF) to an In Frame State (INF). To declare an OOF condition, four consecutive frames with incorrect frame words are required.

For certain values of the HPOH pointer, "R" bits in the VC12 container in STM-0 will look like a framing word after scrambling. This results in false frame synchronization. To eliminate this problem, the acquisition machine is configurable (see register 40H).

The robust configuration requires five consecutive frames with identical NDF and two consecutive frames with the correct frame word for frame acquisition. This will minimize the probability of incorrect synchronization. To ensure that an OOF condition is activated when an incorrect synchronization occurs, the state machine will desynchronize when eight consecutive frames not having identical NDF bits.

Upon frame acquisition, the framer de-scrambles the signal. The standard scrambler defined by the ITU is (2⁷–1). Two additional scramblers (2¹¹-1) and (2¹³-1) can be programmed for STM-0 and STM-1 (see register 50H). This flexibility allows the optimum choice of scrambler for a radio application where an equal distribution of 1s and 0s is required.

Figure 9:LOF State Machine

Loss of Frame (LOF) Detection

Upon detection of an Out Of Frame condition, no consecutive action is required by the ITU specifications. The number of Out of Frame events are counted and stored in a 13-bit counter accessible via registers 43H and 44H.

The Loss Of Frame state machine can be configured via the registers 41H and 42H. Three parameters are programmable (from 1 to 32 frames) in the state machine:

M is the number of consecutive frames with no Out Of Frame conditions required to re-enter a normal state. N is the number of consecutive frames with no Out Of Frame conditions required to re-enter a normal state from a Loss Of Frame state. L is the number of non-consecutive frames with Out Of Frame conditions required to enter a Loss Of Frame state.

Status changes in the OOF & LOF detectors generate OOF & LOF alarms. Also, output from these detectors is provided at the OOF & LOF output pins.

Regenerator Section Receiver

This section provides access to all Regenerator Section Overhead Bytes. All the overhead bytes (27 in STM-1 and 9 in STM-0) are accessible at the RSOH serial output.

Figure 10:Overhead Bytes for the STM-1

A1	A1	A1	A2	A2	A2	J0	\Diamond	\Diamond	
B1	0	0	E1	0		F1	\Diamond	\Diamond	RSOH
D1	0	0	D2	0		D3			
			ΑU	Point	ers				
В2	В2	В2	K1			K2			
D4			D5			D6			
D7			D8			D9			мѕон
D10			D11			D12			
S1					M1	E2	\Diamond	\Diamond	
	Reserved for National Use								
	Media dependant Byte								
	Undefined Bytes								

The Regenerator Section Trace J0

This byte is used to repetitively transmit a Section Access Identifier so that a section receiver can verify its continued connection to the intended transmitter. This byte has been defined in the latest specification of ITU. To avoid compatibility problems with in-service equipment, the chip can ignore J0 processing via register 51H.

The expected J0 string is configurable (see registers 0EH and 0FH). This J0 string value needs to have the correct CRC7 bits per G707 specifications. The receiver calculates the CRC7 of the received J0 string. In the case of a mismatch between the expected & received J0 string, a J0 mismatch (J0MsMtch) is indicated in register A1H. In the case of a transmission error in the J0 string, a J0 string CRC7 error (J0Crc7Err) is indicated in register A1H and will mask the J0MsMtch alarm.

Bip-8 B1 Byte

This byte is used for Regenerator Section error monitoring. The error events are counted in a 16 bit counter accessible via registers 45H and 46H.

The B1 counter can be configured as either a bit or a block counter (see register 47H). Also, the B1OUT output provides pulse for each calculated B1 bit that is different from the one received.

E1 Orderwire Byte

This 64 Kbit/s channel is used to provide orderwire channel for voice communication. The data is serially accessible via RROW. The 64 KHz clock and the 8 KHz byte synchronization signals are used to receive both the E2 and F1 bytes and are provided at pins ROWC and ROWBYC.

F1 Byte

This 64 Kbit/s channel is reserved for the user's purpose. It can be used as an extra maintenance orderwire access. The data is serially accessible via RDOW. The 64 KHz clock and the 8 KHz byte synchronization signals are used to receive both the E1 and E2 bytes and are provided at pins ROWC and ROWBYC.

D1 to D3 Data Channels

This 192 Kbit/s channel is used by the network management as a data channel. The data is accessible via pin RRD and the clock is provided by RRDC. Note that ROWBYC can be used as an 8KHz synchronization if required.

Receive Regenerator Section AIS (RstAIS)

The AIS generated after the Regenerator Section is labeled RstAis. It can be inserted on the following conditions:

- Loss Of Signal (LOS)
- Loss Of Frame (LOF)
- Trace Identification Mismatch (J0MsMtch)

These conditions can be individually enabled or disabled (see register 40H). A test register that can force an RstAis for test purposes is also available. RstAis insertion is indicated in register D0H.

National Used Bytes

The four RSOH "National Use" bytes are only accessible in the STM-1 case. These bytes can be read via registers 03H, 04H, 05H, and 06H or serially at the RSOH output.

Media Dependent and Undefined Bytes

The six "Media Dependent" and four "Undefined" bytes are only accessible in the STM-1 case. These bytes can only be read via the serial RSOH output.

Multiplexer Section Receiver

The Multiplexer Section receiver handles the MSOH overhead bytes. All the overhead bytes (45 in STM-1 and 15 bytes in STM-0) are accessible at the RSOH serial output.

B2 Error Byte

This byte is used for Multiplexer Section error monitoring. The B2 errors are counted either as block error in register 10H and 11H (13 bit) or as bit errors in register 12H, 13H and 14H (18-bit counter).

An Excessive Error Defect (EED) indication (see register A1H) is generated by integrating the B2 errors in a sliding window. Integration is also used when clearing the EED indication. Six registers allow the configuration of EED indication thresholds. They are 18H, 15H, 16H, 17H, 1EH, 1BH, 1CH and 1DH.

These six registers allow configuring the EED threshold from a bit error rate of 10-3 to a bit error rate of 10-9, even in the case of a non-Gaussian statistical distribution of errors. An active EED indication can be configured to insert an AIS signal (see register 20H).

K1 and K2 Bytes: Automatic Protection Channel

These bits are assigned for the APS signaling. A change in K1 byte for three consecutive frames is indicated in register A1H and allows the updating of register 00H. A change in K2 byte for three consecutive frames is indicated in register A1H and allows the updating of register 01H.

MS-RDI via K2 Byte

The Multiplex Section Remote Defect Indication (MS-RDI) is used to tell the transmit end that the received end has detected an incoming section defect or is receiving MS-AIS. An MS-RDI is detected when the three received K2<2:0> bits have a value of "110" for three consecutive frames. MS-RDI detector status changes are indicated in register A1H.

MS-AIS via K2 Byte

The Multiplex Section AIS is detected when the three received K2<2:0> bits have a value of "111" for three consecutive frames. MS-AIS detector status changes are indicated in register A1H.

MS-REI via M1 Byte

This byte is allocated for the Remote Error Indication. Remote BIP errors are accumulated in a 13-bit counter, accessible via registers 0AH and 09H. Remote block errors are accumulated in an 18-bit counter, accessible via registers 0DH, 0CH and 0BH.

S1 Byte: Synchronization Status

S1<3:0> bits are allocated for Synchronization Status Messages. A change in S1 byte for three consecutive frames is indicated in register A2H and allows the updating of register 02H.

National Used Bytes

The "National Use" bytes are only accessible in the STM-1 case. There are two MSOH "National Use" bytes. These bytes can be read via registers 07H and 08H.

Undefined Bytes

The "Undefined Bytes" are only accessible in the STM-1 case. There are 26 bytes only accessible via the RSOH serial output.

E2 Byte: Orderwire Channel

This 64 Kbit/s channel is used to provide orderwire channel for voice communication. The data is accessible serially via RMOW. The 64 KHz clock and the 8 KHz byte synchronization signals are used to receive

both the E1 and F1 bytes and are provided at pins ROWC and ROWBYC.

D4 to D12 Bytes: Data Channel

This 576 Kbit/s channel is used as a data channel by the network management. The data is accessible via pin RMD and the clock is provided by RMDC.

Receive Multiplexer Section AIS (MS-AIS)

The AIS generated after the multiplexer section is labeled MstAis. It can be inserted on the following conditions:

- MS-AIS detection in K2
- · EED detection

The AIS insertion can disabled or forced via register 20H. The EED dependency can be disabled via register 20H (ITU specification). MstAis insertion is indicated in register D0H.

Multiplexer Section Protection (MSP) Block

Master 1-for-1 Protection Configuration

The MSP block receives the data coming from the MST block and from the slave receiver via the DMSP-PDATA<7:0> inputs (MSP bus). K1 and K2 from the MSP bus are de-multiplexed and accessible in registers 22H and 23H. The Signal Degrade (SD) and the Signal Fail (SF) indications from the slave are input to the Master at DMSPPSD & DMSPPSF respectively and are accessible in register C3H.

Changes in register 22H, 23H, DMSPPSD or DMSPPSF are indicated in register A3H.

Having access to the K1 and K2, SD and SF information for both the master and the slave SXT6051, the microprocessor can select the appropriate working channel. The selection is done by setting the protection switch via register 21H. The effective switch position is accessible on register D0H.

K1/K2 filtering and SF detection are done on chip. The SD detection is done by the microprocessor using a user defined criteria.

Slave 1-for-1 Protection Configuration

This block is just an interface between the data received from the MST block and the MSP interface with the Master. All switching is done in the master-configured SXT6051.

Pointer Recovery

Pointer Recovery Block

The pointer recovery block interprets the value of the incoming pointer associated with either a VC-3 (STM-0) or a VC-4 (STM-1) payload. The AU pointers include two SS undefined bits. These bits can be either ignored or recovered in the receive pointer processor (see register 90H). The monitoring function of the receive pointer processor includes the following counters:

- An 11-bit Positive Justification Counter accessible via register 91H and 92H
- An 11-bit Negative Justification Counter accessible via register 93H and 94H

This block indicates the following conditions via register A4H: an AU-AIS (all ones in the pointer), Loss of Pointer (LOP) or New Data Flag (NDF).

The LOP detection follows the ITU G 783 recommendation using eight consecutive frames.

Receive Adaptation Section AIS (DmsaAIS)

The AIS generated after the Pointer recovery section is labeled DmsaAis. It can be inserted on the following conditions:

- AU-AIS detection (all ones pointer for three consecutive frames)
- · LOP detection

The AIS can be disabled or forced via register 90H. DmsaAis insertion is indicated in register D0H.

Higher Order Path Receiver

The Higher Order Path Receiver processes the overhead bytes associated with the Higher Order Path Overhead. All the Path Overhead bytes are accessible at the RPOH output.

J1 Byte Path Trace

This byte is used to repetitively transmit a Path Access Identifier so that a path receiver can verify its continued connection to the intended transmitter. The length of the "expected" J1 string can be programmed to either 64 bytes (non-specified) or 16 bytes with CRC7 (see register 80H). The 16 byte "expected" J1 string value needs to have the correct CRC7 bits per G707 specifications. The receiver calculates the CRC7 of the received J0 string.

In the case of a mismatch between the expected and received J1 string, a J1MsMtch is indicated in register A5H. In the case of a transmission error in the J1 string, a J1Crc7Err is indicated (16 byte case only) in register A5H and will mask the J1MsMtch indication.

B3 Byte

This byte is used for Higher Order Path error monitoring. The error events are counted in a 16 bit counter accessible via registers 86H and 87H.

The B3 counter can be used either as a bit or a block counter configurable via register 80H. Also, the B3OUT output provides a pulse for each calculated B3 bit that is different from the received one.

C2 Byte

This byte indicates the composition of the VC-3 or the VC-4 payload. A change in the C2 byte for three or five (configurable via register 80H) consecutive frames is indicated in register A4H and allows the updating of register 83H.

An "expected" value of C2 can be programmed in register 82H. If the received C2 value is not equal to the expected value and is not zero or one, this is indicated in register A5H via the HptSlm (HPT Signal Label Mismatch).

VC-AIS is defined as all ones in C2 (new G783 specifications). Five consecutive frames are required for the VC-AIS detection which is indicated in register A4H.

Unequipped Detection

To generate an "unequipped" indication, a set of four simultaneous events need to be detected (see register 81H):

- C2 equal to all zero
- · J1 equal to zero
- N1 equal to all zero
- No B3 errors

The unequipped detector requires 5 frames before it is indicated in register A5H.

G1 Byte

This byte conveys the path status and performance back to a VC-3 or VC-4 trail termination source as detected by a trail termination sink.

G1<7:4> bits act as a Remote Error Indication (REI). They report the number of B3 errors detected at the

remote end. These REI errors are accumulated in the REI counter registers 88H and 89H. The REI counter can be selected as a bit counter or as a block counter via register 80H.

G1<3:1> bits act as a Remote Detection Indication (RDI). They, along with G1<0> ("spare" bit), are accessible via register 85H. The contents of this register is filtered over 3 or 5 frames configurable via register 80H. An update to register 80H is indicated in register A5H.

An RDI is reported to the far-end upon detection of an SLM (C2 Mismatch) or an "unequipped" alarm. The dependency of RDI on either of these conditions is configurable via 81H. This will ensure compatibility of the new equipment with an installed equipment base. (See Table 5).

K3 Byte

This byte is allocated for the VC-3 and VC-4 Automatic Protection Switching (APS). A change in K3 byte for three consecutive frames is indicated in register A4H and allows the updating of register 84H.

N1 Byte

There is no internal processing for the tandem connection byte. This is because in an ADM, the virtual container VC-3 or VC-4 is de-multiplexed to VC12 to extract and insert the VC-12 traffic. A new B3 needs to be generated and the tandem connection is broken.

N1 is accessible at the RPOH output and can be used in the detection of an "unequipped" VC (see register 81H).

F2 and F3 Bytes

These two 64 Kbit/s channels are reserved for the user. They can be used as an extra maintenance orderwire access. The data is serially accessible via the RPOW1 pin for F2 and RPOW2 for F3. The 64 KHz clock and 8KHz synchronization are provided on pins RPOWC and RPOWBYC. In an ADM configuration with no receive timing, these bytes can be passed through to the transmit side.

H4 Processing and Multi-Frame Recovery

The multi-frame recovery state machine requires two consecutive frames with the correct H4 adjacent pattern to synchronize. The Loss of Multiframe (LOM), indicated in register A5H, is declared after two multiframes. The LOM indication forces the DTBH4EN output on the Telecom Bus Low.

Receive Higher Order path AIS (HptAIS)

The AIS generated after the HPOH receiver is labeled HptAis. It can be inserted on the following conditions:

- SLM (C2 byte mismatches)
- TIM (J1 string mismatches)
- Unequipped detection

The AIS can be disabled or forced via register 80H.

Re-Timing Function

The re-timing function block is used when the system needs to synchronize the DTBDATA<7:0> output with a local clock input. Re-timing can be disabled via register 51H.

Two external signals are required to align the payload:

- DRETFRI, an 8 KHz input signal indicating the position of the J0 byte. This input is always needed.
- DRETCLK, a 19.44 MHz input signal for a STM-1 or a 6.48 MHz input signal for STM-0. This is the "local" clock.

The DRETFRMI is generated externally by DRET-CLK. The re-timing function recalculates the new pointer and inserts the new value to the payload VC-3 and VC-4.

After the re-timing block, the signal is sent to the Telecom Bus. The Telecom Bus is described in the Timing Specification part of this document.

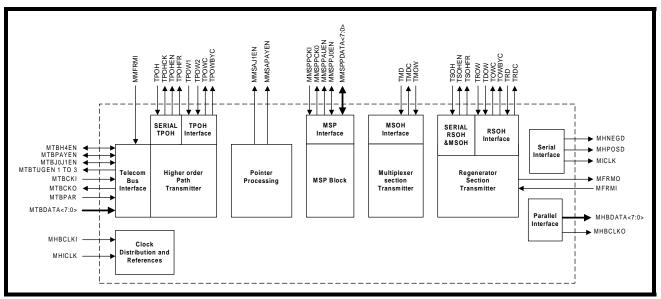
Note that when the receive re-timing function is enabled, the AU pointer and the A1/A2 frame word are still present on the Telecom Bus.

Transmitter Default Operation

Higher Order Path Transmitter

The HPT transmitter receives its input signal from the MTBDATA<7:0> Telecom Bus Interface input. It inserts the Higher Order Path Overhead and synchronizes the VC-3 or the VC-4. The Telecom Bus interface is configured via registers 50H and 71H.

All HPOH bytes can be sourced from the serial TPOH input, received bytes (ADM mode only), microprocessor registers or internal processing. An AIS signal can be forced on the incoming payload data via register 71H. The parity on the Telecom bus is checked (three parity errors per frame) and indicated in register E0H.


J1 byte: Path Trace Identifier

This byte is used to transmit a repetitive Path Trace Identifier so that a path receiver can verify its continued connection to the intended transmitter. The length of the "transmit" J1 string can be programmed to either 64 bytes (non-specified) or 16 bytes with CRC7 via register 71H. The 16 byte "expected" J1 string value needs to have the correct CRC7 bits per G707 specifications. If the higher order VC is configured unequipped (see register 71H), then J1 byte can be automatically set to all 0s (see register 70H). If the VC is not configured as unequipped, J1 can be provided by one of three sources configured in register 70H:

- The incoming byte from the Telecom bus input (ADM mode only)
- The serial TPOH interface (TPOH input pin)
- An internal RAM (up to 64 bytes)

The RAM is accessed via registers 75H and 76H. During a RAM access the default J1 value transmitted "01H." Note that a complete 16-byte string with CRC7 is required by the ITU for proper operation.

Figure 11:Transmit Detail Block Diagram

B3 Byte

The B3 byte source is specified by register 70H and can come from:

- Transmit Telecom bus (In ADM mode)
- By calculation on the previous frame

For testing purposes, it is possible to invert the B3 value (see register 71H). The B3 value can be inverted for a single frame (8 errors) or for an indefinite duration.

C2 Byte: Path Label

If the higher order VC is configured unequipped (see register 71H), then the C2 byte is automatically set to 0.

If not, the C2 source is specified by the register 70H and can come from:

- Transmit Telecom bus (In ADM mode)
- The serial POH interface (TPOH input pin)
- An internal register (register 72H) programmed by the microprocessor

G1 byte: Remote defects HP-REI & HP-RDI

The G1 source is specified by the register 70H:

- Transmit Telecom bus (In ADM mode)
- The serial POH interface (TPOH input pin)
- Internal Processing (see register 71H)

In the case of Internal Processing the REI bits can be either provided by the B3 error value on the receiver or be disabled (set to "0000").

Also, the RDI bits can be supplied either by the receiver (See Table 5), or the contents of register 74H

(in which case the G1 spare bit is also sourced from 74H).

Table 5: G1x RDI Bit Coding

G1<3:1> RDI bits coding	Meaning	Triggered by	Priority
000	No Remote Defect	No Remote Defect	0
101	Remote Defect	AU-AIS, LOP	1
100	Remote Defect	PLM	2
110	Remote Defect	TIM, UNEQ	3

F2 Byte: Order Wire Channel

The F2 source is specified by the register 70H and can come from:

- The incoming byte from the Telecom bus input (only in ADM mode).
- The 64 kbit/s serial TPOW1 input.

F3 Byte: Order Wire Channel

The F3 source is specified by the register 70H and can come from:

- The incoming byte from the Telecom bus input (only in ADM mode).
- The 64 kbit/s serial TPOW2 input.

H4 Byte: Multiframe Indicator

The H4 source is specified by the register 70H and can come from:

- The incoming byte from the Telecom bus input (only in ADM mode).
- Internal hardware processing. In this case, an internal counter that can be either free running or synchronized by the MMFRMI input in terminal mode, is used to update H4<1:0> with values 0 through 3. In the ADM mode, MTBH4EN and MTBJ0J1EN on the Telecom Bus synchronizes H4. In either case, H4<7:2> are set to 1.

K3 Byte: APS

The K3 source is specified by the register 70H:

- The incoming byte from the Telecom bus input (only in ADM mode).
- The serial POH interface (TPOH input pin)
- An internal register (address 73H)

N1 Byte: for Tandem Connection Support

The N1 source is specified by the register 70H and can come from:

- The incoming byte from the Telecom bus input (only in ADM mode).
- The serial POH interface (TPOH input pin)

There is no internal processing for N1 and tandem connection monitoring. But the monitoring can be done by configuring the SXT6051 in ADM mode (the POH bytes are present on the Telecom bus input and can be passed-through), and by using an external FPGA to read and write N1 and B3 bytes on the transmit Telecom bus.

Transmit Pointer Processing Function

Terminal Mode

In this configuration, the reference frequency is supplied by the SXT6051 to the Telecom bus. The inserted pointer value is fixed 6800H.

ADM Mode

The transmit frequency of the SXT6051 and the Telecom bus frequency can be different. This configuration allows the pointer processing block to calculate the value of the pointer while the data is fed through a FIFO. An overflow of this FIFO is indicated in register E0H.

The pointer processor is able to handle up to 150 ppm of total offset between the transmit clock and the Telecom Bus clock exceeding the ITU specifications. No NDF is generated on the transmit side.

Pointer justification events are recorded by two 11-bit counters (one for positive, the other one for negative) in registers E2H, E3H, E4H and E5H. Overflows are indicated in register E0H.

Note: The transmit frame can still be aligned by an 8KHz reference on MFRMI.

AU-AIS Insertion

For both Terminal and ADM modes, it is possible to force AU-AIS ("all one" into AU-3 or AU-4) via register 30H.

Test Points

Two output pins test points are available:

- MMSAJ1EN: This pulse (active High: pulse duration is 51 ns (STM-1) or 154 ns (STM-0) indicates J1 byte presence on the TB.
- MMSAPAYEN: A High indicates the position of VC-3 (STM-0) or VC-4 (STM-1) bytes. A Low indicates the SOH + AU Pointer bytes presence on the TB.

Transmit Multiplex Section Protection (MSP Block)

This block is used in a 1-for-1 configuration (ADM or Terminal). Two SXT6051 chips in parallel can transmit the same AU data. In a non-protected configuration, the data is simply passed to the transmit MST.

In a 1-for-1 protection, one SXT6051 will be configured as Master (Main) and the other one as Slave (Redundant).

The Master transmitter data flow follows the unprotected mode flow and the SOH overhead will be added in the Multiplexer Section Block.

In the Slave transmitter, the Higher Order Path Transmitter and Pointer Processing block are not used. The data and timing reference are input from the Master transmitter to the Slave via the MSP bus. The Slave Multiplexer and Regenerator Section Transmitter blocks process these incoming AU data, clock and timing references.

Note

The transmitted data at the Slave Regenerator Section output (MHBDATA<7:0> or MHPOSD/MHNEGD) is synchronized by the MSP bus signal MMSPPJOEN received from the Master. This results in the A1 framing bytes of both Master and Slave transmit frames being aligned.

Multiplexer Section Transmitter

The multiplexer section inserts the MSOH overhead bytes into the transmit frame.

Note that in case of a regenerator, all the received MSOH bytes are passed through unchanged.

B2 Error Byte(s):

The B2 (BIP-8 in STM-0 mode, BIP-24 in STM-1) byte source is specified by register 70H and can come from:

- Transmit Telecom bus (In ADM mode)
- · By calculation on the previous frame

For testing purposes, it is possible to invert B2 value (via register 71H). The B2 value can be inverted for a single frame (8 errors) or for an indefinite duration.

K1 and K2 Automatic Protection Channel Bytes & MS-RDI:

These bytes are assigned for APS signaling and the transmission of a Multiplex Section Remote Defect Indication.

The K1 source is specified by the register 61H and can come from:

- The serial RSOH and MSOH interface (TSOH input pin)
- An internal register (address 37H) programmed by the microprocessor

The K2 source is specified by the register 61H:

- The serial RSOH and MSOH interface (TSOH input pin)
- Internal hardware process. In this case the RDI bits can be provided by RDI output from the receiver (see Table 6) or an internal register (address 38H) programmed by the microprocessor (in which case the other K2 bits are also updated from register 38H). This choice is configurable via register 30H

Table 6: K2 RDI Bit Coding

K2<2:0> RDI bits coding	Meaning	Triggered by
000	No Remote Defect	No Remote Defect
110	Remote Defect	MS-AIS, EED ¹ Microprocessor ²

- The Excessive Error Defect trigger can be disabled via register 1AH
- 2. It is possible to force insertion of RDI by configuring register 1AH

D4 to D12 Bytes: Data Communication Channel:

The D4-D12 byte source is specified by the register 60H and can come from:

- Transmit Telecom bus (In ADM mode)
- A dedicated 576 kbit/s serial interface (TMD input pin)

Note

The D4-D12 bytes can be passed-through unchanged from an SXT6051 receiver (when receive re-timing is disabled) to a SXT6051 transmitter by using the Telecom bus support. If the two clock frequencies (receive and transmit) are different, some data will be periodically lost or added depending on the frequency variation. For example, for a difference of 5ppm between the clocks, one frame will be lost or added every 25s.

S1 Byte: Synchronization Status

The S1<3:0> bits are allocated for Synchronization Status Messages. The S1 byte source is specified by the register 61H and can come from:

- The serial RSOH & MSOH interface (TSOH input pin)
- An internal register (address 39H) programmed by the microprocessor

M1 Byte: MS-REI

This byte is allocated for the Multiplex Section Remote Error Indication. The M1 byte source is specified by the register 60H and can come from:

- The serial RSOH & MSOH interface (TSOH input pin)
- The Internal Processing configured by 30H. The M1<4:0> REI bits can be either provided by the detected B2 errors from the receiver or disabled (set to "00000"). The three MSB (M1<7:5>) undefined bits are always set to "000" value.

E2 Byte: Orderwire

This byte is used to provide orderwire channel for voice communication. The E2 byte source is specified by the register 60H and can come from:

- Transmit Telecom bus (In ADM mode)
- A dedicated 64 kbit/s serial interface (TMOW input pin)

See note above

NU Bytes: Bytes Reserved for a National Use

In the STM-1 mode, two bytes are reserved for a National Used. They are located in row number 9, column number 8 (NU9-8) and column number 9 (NU9-9) of the MSOH (see Figure 10).

The NU9-8 byte source is specified by the register 61H and can come from:

- The serial RSOH and MSOH interface (TSOH input pin)
- An internal register (address 35H) programmed by the microprocessor

The NU9-9 byte source is specified by the register 61H and can come from:

- The serial RSOH and MSOH interface (TSOH input pin)
- An internal register (address 36H) programmed by the microprocessor

Undefined Bytes

The 25 undefined bytes of the STM-1 frame's MSOH (see Figure 10) can be provided to the transmit frame by the serial RSOH and MSOH interface (TSOH input pin)

Regenerator Section Transmitter

The Regenerator section inserts the RSOH overhead bytes. In a repeater configuration, each received RSOH byte (except A1, A2 and B1) can be individually passed through unchanged.

A1 & A2 Framing Bytes

The frame keyword bytes are always regenerated in the SXT6051 Transmitter regardless of the configuration.

The Regenerator Section Trace J0

This byte is inserted to repetitively transmit a Section Access Identifier so that a section receiver can verify its continued connection to the intended transmitter. The 16 byte "expected" J0 string value needs to have the correct CRC7 bits per G707 specifications. Register 60H specifies the J0 source to be either:

- The received byte (Regenerator mode) from the Regenerator Section receiver. The received byte from the transmit telecom bus (ADM mode)
- The serial RSOH and MSOH interface (TSOH input pin)
- The internal RAM (16 byte) programmed by the microprocessor

The RAM is accessed via registers 75H and 76H. During J0 RAM configuration the transmitted J0 byte value is "01H." Note that a complete 16-byte string with CRC7 is required by the ITU for proper operation.

Compatibility of J0 with in-service equipment can be provided by either writing a value into the transmit J0 RAM, or by setting register 3AH, to value '1' (see register 3AH).

B1 Bip-8 Byte

B1 byte is always regenerated in the SXT6051 transmitter. This byte is used for the Regenerator Section error monitoring function. It is the result of a BIP-8 calculation done on the previous scrambled frame, and it is inserted into transmit RSOH before scrambling. For testing purpose, it is possible to invert the B1 value, (register 30H). The B1 value can either be inverted for a single frame (8 errors), or forever.

E1 Byte: Orderwire Channel

This byte is used to provide an orderwire channel for voice communication. Register 60H specifies the E1 source to be either:

- The received byte (Regenerator mode) from the Regenerator Section receiver. The received byte from the transmit telecom bus (ADM mode)
- The dedicated 64 kbit/s serial interface (TROW input pin)

See note above.

F1 byte: Orderwire Channel

This byte is reserved for user purposes and can be used as extra maintenance orderwire channel. Register 60H specifies the F1 source to be either:

- The received byte (Regenerator mode) from the Regenerator Section receiver. The received byte from the transmit telecom bus (ADM mode)
- The dedicated 64 kbit/s serial interface (TDOW input pin)
- Transmit Telecom bus (In ADM mode)

See note above.

D1 to D3 Bytes: Data Communication Channel

This channel is used as a data channel by the network management. Register 60H specifies the D1-D3 source to be either:

- The received byte (Regenerator mode) from the Regenerator Section receiver. The received byte from the transmit telecom bus (ADM mode)
- A dedicated 192 kbit/s serial interface (TRD input pin)

See note above

NU Bytes: Bytes Reserved for a National Use

In the STM-1 mode, four bytes are reserved for National Use. They are located in row number 1, column numbers 8 (NU1-8) and 9 (NU1-9) and in row number 2, column numbers 8 (NU2-8) and 9 (NU2-9) of the MSOH (see Figure 10). Registers 61H and 30H specify the source of these bytes. The possibilities are:

- The received byte (Regenerator mode) from the Regenerator Section receiver.
- The serial RSOH and MSOH interface (TSOH input pin)
- Internal registers (address 31H, 32H, 33H, 34H)
- Default value AAH (only for NU1-8 and NU1-9)

MD bytes: Media Dependent Bytes

In the STM-1 mode, the six media-dependent bytes are located in raw number 2, column numbers 2 (MD2-2), 3 (MD2-3), and 5 (MD2-5) and in raw number 3, column numbers 2 (MD3-2), 3 (MD3-3), and 5 (MD3-5) of the MSOH. Register 63H specifies the source of these bytes. The possibilities are:

• The received byte (Regenerator mode) from the Regenerator Section receiver

The serial RSOH and MSOH interface (TSOH input pin)

UN Bytes: Undefined Bytes

In the STM-1 mode, four "Undefined" bytes are located in row number 2, column number 6 (UN2-6), and in row number 3, column numbers 6 (UN3-6), 8 (UN3-8), and 9 (UN3-9) of the MSOH (see Figure 10). Register 63H specifies the source of these bytes. The possibilities are:

- The received byte (Regenerator mode) from the Regenerator Section receiver
- The serial RSOH and MSOH interface (TSOH input pin)

Scrambler

After inserting the RSOH bytes, the data is scrambled. The ITU Standard scrambler is 2^7 -1. Two additional scramblers 2^{11} -1 and 2^{13} -1 can be programmed for STM-0 and STM-1 via register 50H. This flexibility allows the optimum choice of scrambler for a radio application.

The data scrambling can be disabled via register 50H or via the external input pin SCRAMSEL.

External Frame Synchronization

The SXT6051 provides an external frame pulse reference (output pin MFRMO). It is an 8 KHz reference signal with a pulse duration of 154ns (STM-0) or 51ns (STM-1). This pulse is used to identify the position of the frame start. This signal is synchronous with the output transmit frame clock.

Transmit Frame Alignment

The transmit frame can be synchronized (in Terminal or ADM mode, no protection or protection Master) by using an external 8 KHz reference connected to the MFRMI input pin. This input signal is active High and can be either a square wave or a pulse.

If the SXT6051 is configured in parallel mode the MFRMI input must be synchronous with the MHB-CLKI parallel Transmit Frame clock reference input; if the SXT6051 is configured in serial mode, the MFRMI input must be synchronous with MHICLK serial Transmit Frame clock reference input (51.84 MHz).

This feature can be used by an Upper Level Multiplexer to align several SXT6051s. The alignment can done by cascading the reference signals (output pin MFRMO of chip #2 connected to input pin MFRMI of chip #3, etc.).

If the MFRMI is not used it **must** be tied to GND.

Parallel Interface

The parallel interface output is a byte wide bus MHB-DATA. The parallel clock is output synchronous with MHBCLKO (6.48 MHz/STM-0 or 19.44 MHz/STM-1).

The parallel interface is selected via register 50H. The selection of a parallel interface is common between the transmit and receive sides.

In case of a repeater application, the order on the parallel byte will be the same between the input and the output and the delay is constant. The repeater delay is approximately 700ns in STM-0 mode and 233ns in STM-1 mode.

Serial Interface

The serial interface output at STM-0 is a B3ZS signal output on MHPOSD and MHNEGD. The output clock is MICLK (51.84 MHz).

Note that the selection of serial interface and B3ZS decoder (see register 50H) is common to the transmitter and the receive side of the chip.

If the B3ZS decoder is not used, MHPOSD is used as a NRZ output pin.

Clock Distribution and Reference

Depending on the chip configuration, the source of the Transmit Clock references

Table 7: Operating Mode Vs. Input Clock Source Reference

	Transmit Frame Parallel Clock Reference output	Transmit Frame Serial Clock Reference output	MSP & TSOH Bus Parallel Clock Reference output	Telecom Bus Parallel Clock Reference output	VC3/4 & TPOH Bus Clock Reference output			
	MHBCLKO	MICLK	MMSPPCKO	МТВСКО	ТРОНСК			
OPERATING MODE	CLOCK SOURCE (INPUT PIN)							
Repeater Serial interface	Not used (tri-state)	DHICLK (1) (51.84 MHz ±20ppm)	DHICLK / 8 (1) (6.48 MHz ±20ppm)	Not used (tri-state)	Not used (tri-state)			
Repeater Parallel interface	DHBCLK (2) (6.48/19.44 MHz ± 20ppm)	Not used (tri-state)	DHBCLK (2) (6.48/19.44 MHz ±20ppm)	Not used (tri-state)	Not used (tri-state)			
Terminal No Protection Serial interface	Not used (tri-state)	MHICLK (51.84 MHz ±20ppm)	MHICLK / 8 (6.48 MHz ±20ppm)	MHICLK / 8 (6.48 MHz ±20ppm)	MHICLK / 8 (6.48 MHz ±20 ppm)			
Terminal No Protection Parallel interface	MHBCLKI (6.48/19.44 MHz ± 20ppm)	Not used (tri-state)	MHBCLKI (6.48/19.44 MHz ±20ppm)	MHBCLKI (6.48/ 19.44MHz ± 20ppm)	MHBCLKI (6.48/19.44 MHz ±20ppm)			
ADM No Protection Serial interface	Not used (tri-state)	MHICLK (51.84 MHz ±20ppm)	MHICLK / 8 (6.48 MHz ±20 ppm)	Not used (tri-state)	MTBCLKI (6.48 MHz ±20 ppm)			

Table 8: Operating Mode Vs Output Clock Source Reference

	Transmit Frame Parallel Clock Reference output MHBCLKO	Transmit Frame Serial Clock Reference output MICLK	MSP & TSOH Bus Parallel Clock Reference output MMSPPCKO	Telecom Bus Parallel Clock Reference output MTBCKO	VC3/4 & TPOH Bus Clock Reference output TPOHCK
ADM No Protection → Parallel interface	MHBCLKI (6.48/ 19.44 MHz ± 20ppm)	Not used (tri-state)	MHBCLKI (6.48/ 19.44 MHz ±20ppm)	Not used (tri-state)	MTBCLKI (6.48 MHz ±20 ppm)
Terminal → Protection Main Serial interface	Not used (tri-state)	MHICLK (51.84 MHz ±20ppm)	MHICLK / 8 (6.48 MHz ±20 ppm)	MHICLK / 8 (6.48 MHz ±20 ppm)	MHICLK / 8 (6.48 MHz ±20 ppm)
Terminal Protection Main Parallel interface	MHBCLKI (6.48/ 19.44 MHz ± 20ppm)	Not used (tri-state)	MHBCLKI (6.48/ 19.44 MHz ±20ppm)	MHBCLKI (6.48/ 19.44 MHz ± 20ppm)	MHBCLKI (6.48 / 19.44 MHz ±20ppm)
Terminal → Protection Slave Serial interface	Not used (tri-state)	MHICLK (51.84 MHz ±20ppm)	MMSPPCKI (6.48/ 19.44 MHz ±20ppm)	Not used (tri-state)	Not used (tri-state)
Terminal Protection Slave Parallel interface	MMSPPCKI (6.48/ 19.44 MHz ± 20ppm)	Not used (tri-state)	MMSPPCKI (6.48/ 19.44 MHz ±20ppm)	Not used (tri-state)	Not used (tri-state)
ADM → Protection Main Serial interface	Not used (tri-state)	MHICLK (51.84 MHz ±20ppm)	MHICLK / 8 (6.48 MHz ±20 ppm)	Not used (tri-state)	MTBCLKI (6.48 MHz ±20 ppm)

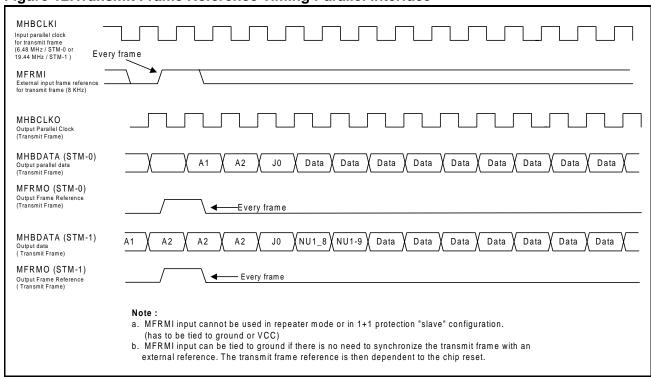
^{1.} In case of LOS, MHICLK can be used as a Blue Clock (see register 40H)

^{2.} In case of LOS, MHBCLKI can be used as a Blue Clock (see register $40\mathrm{H}$)

Table 8: Operating Mode Vs Output Clock Source Reference

	Transmit Frame Parallel Clock Reference output MHBCLKO	Transmit Frame Serial Clock Reference output MICLK	MSP & TSOH Bus Parallel Clock Reference output MMSPPCKO	Telecom Bus Parallel Clock Reference output MTBCKO	VC3/4 & TPOH Bus Clock Reference output TPOHCK
ADM	MHBCLKI	Not used	MHBCLKI	Not used	MTBCLKI
Protection Main	(6.48/	(tri-state)	(6.48/	(tri-state)	(6.48 MHz
Parallel interface	19.44 MHz ± 20ppm)		19.44 MHz ±20ppm)		±20 ppm)
ADM → Protection Slave	Not used	MHICLK	MMSPPCKI	Not used	Not used
Serial interface	(tri-state)	(51.84 MHz	(6.48/	(tri-state)	(tri-state)
		±20ppm)	19.44 MHz ±20ppm)		
ADM	MHBCLKI	Not used	MMSPPCKI	Not used	Not used
Protection Slave	(6.48/	(tri-state)	(6.48/	(tri-state)	(tri-state)
Parallel interface	19.44 MHz ± 20ppm)		19.44 MHz ±20ppm)		

^{1.} In case of LOS, MHICLK can be used as a Blue Clock (see register 40H)

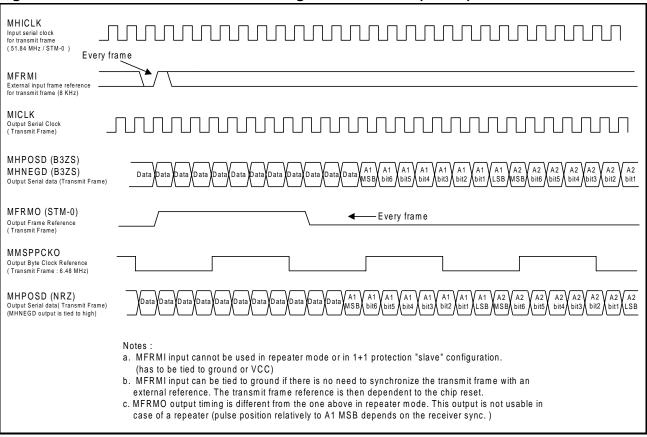


^{2.} In case of LOS, MHBCLKI can be used as a Blue Clock (see register 40H)

FUNCTIONAL TIMING

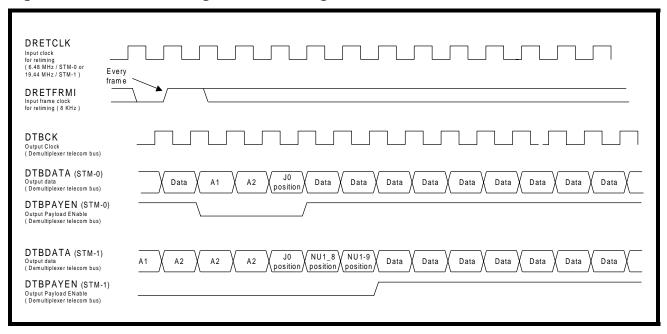
Transmit Frame Parallel Timing

Figure 12:Transmit Frame Reference Timing Parallel Interface



Transmit Frame Serial Timing

Figure 13:Transmit Frame Reference Timing Serial Interface (STM-0)



Receive Re-timing Functional Timing

Figure 14: Receive Re-Timing Function Timing

Telecom Bus Interface

The SXT6051 follows the industry standard Telecom Bus to interface with other SDH products, including the SXT6251. The standard is based on the original work of the IEEE P1396 project, which never made it to final approval. SFT has enhanced the bus to be compatible with other standard SDH products on the market.

Multiplexer Telecom Bus Terminal Mode

In this mode, the Telecom Bus is a contra-directional interface. This means the SXT6051 generates the timing references (clock and signals) and receives the synchronized data.

> Note on Telecom Bus **Timing Reference**

All transitions of the Telecom bus Timing references (MTBH4EN, MTBPAYEN, MTBJ0EN and MTBTUGEN) are in phase with the rising edge of MTBCKO, and the incoming data (MTBPAR & MTBDATA<7:0>) are clocked by the falling edge of this clock.

> Note on Multi-Frame Synchronization

The transmit multi-frame can be synchronized by using an external 2 KHz reference signal connected to the MMFRMI input pin. This synchronization input signal can only be active High for a single frame and must be synchronous with MTBCLKO or MHBCKO outputs.

It is possible to synchronize several transmitters by cascading the synchronization: Connect the output MTBH4EN of one chip (chip #1) to the input MMFRMI of a second chip (chip #2), etc. If no synchronization is required, MMFRMI must be grounded.

This Telecom Bus is comprised of the following signals:

MTBDATA<7:0>

Byte wide input data with either STM-1 or STM-0 frame structure depending on STMMODE selection. Only the C-4 (in STM-1) or C-3 (in STM-0) bytes are relevant. The SOH Byte, AU Pointers and HPOH byte locations can be filled by a 0 or 1 but not tri-stated.

MTBPAR

MTBDATA<7:0> parity check. An odd parity calculation accompanies each data byte input (including the bytes filling the SOH, AUP and HPOH locations).

MTBCKO

Telecom Bus byte clock output (6.48) MHz in STM-0 and 19.44 MHz in STM-1 mode). This clock is the same as the Multiplexer transmit frame clock output (MHBCLKO).

MTBCKI

Not used in terminal mode (should be tied to ground).

MTBPAYEN

A High on this output indicates the location of the VC-4 (STM-1 mode) or the VC-3 with two stuffed columns (STM-0 mode) on the Multiplexer Telecom Bus. A Low indicates the location of the SOH bytes and the AU Pointers bytes.

MTBH4EN

An output that indicates the multi-frame start position. This signal is High during one complete frame every four frames and Low for the remaining three frames The Low to High or High to Low transition occurs at the H4 location, and the MTBH4EN output is High on the J1 byte position following the "00" value of H4.

MTBJ0J1EN

An output that indicates J0 and J1 bytes locations relative to the SXT6051 Transmit Frame synchronization as there is no AU pointer movements and no re-timing functions in Terminal mode (AU pointer equal to value 0). MTBJ0J1EN can be configured via register 71H in two ways:

•A single pulse at J0 position and a single pulse at J1 position.

•A single pulse at J0 position, a single pulse at J1 position and a double pulse on J1 every four frames to indicate the V1 position.

MTBTUGEN1

A High indicates the location of TUG3 #1, plus the position of the VC-4 POH bytes. In STM-0 this output is tied High.

MTBTUGEN2 A High indicates the location of TUG3 #2, plus the position of the VC-4 POH

bytes (But not the stuffed column). In STM-0 this output is tied High

MTBTUGEN3 A High indicates the location of TUG3

#3, plus the position of the VC-4 POH bytes (But not the stuffed column). In STM-0 this output is tied High.

Multiplexer Telecom Bus ADM Mode

In this mode, the Telecom Bus is a co-directional interface. This means the SXT6051 receives the timing references (clock and signals) and the associated data.

The signals for this mode are:

MTBDATA<7:0> Identical to the Terminal mode.

MTBPAR Identical to the Terminal mode.

MTBCKO Output is tri-stated (not used).

MTBCKI This input is the Telecom Bus byte

clock (6.48 MHz in STM0 and 19.44 MHz in STM1 mode). It can be asynchronous to the transmit reference

clock input.

Note that the incoming data (MTB-PAR and MTBDATA<7:0>) and Telecom bus Timing references (MTBH4EN, MTBPAYEN, and MTBJ0J1EN) are internally clocked by the falling edge of MTBCKI (see

Telecom bus timings).

MTBPAYEN A High on this input indicates the

location of the VC-4 (STM-1 mode) or the VC-3 with two stuffed columns (STM-0 mode). A Low indicates the location of the SOH bytes and the AU

Pointers bytes.

MTBH4EN This input indicates the multiframe

start position. This input is not used if MTBJ0J1EN is configured to support the "framing-multiframing indication" (see register 71H<7>). When used, this signal must be High one frame every fourth frame. It is possible to use a pulse as an indicator. As a minimum,

this pulse has to be one clock cycle

long and cover the J1 time slot. (See

timing for further details)

Note that MMFRMI input pin is not

used and is tied to ground.

MTBJ0J1EN This input indicates J0 and J1 bytes'

locations on MTBDATA<7:0>. MTBJ0J1EN can be configured via

register 71H in two ways:

•A single pulse at J0 position and a single pulse at J1 position indicates when the frame and the

payload starts.

•A single pulse at J0 position, a single pulse at J1 position and a double pulse on J1 every four frames

indicating a multiframe.

MTBTUGEN1 Outputs are tri-stated (not used).

MTBTUGEN2 Outputs are tri-stated (not used).

MTBTUGEN3 Outputs are tri-stated (not used).

Demultiplexer Telecom Bus (Terminal or ADM) Mode

Note on Telecom Bus Timing Reference

All transitions of the Telecom bus Timing references (DTBH4EN, DTBPAYEN, DTBJ0EN and DTBTUGEN) and the outgoing data (DTBPAR and DTBDATA<7:0>) are clocked by the rising edge of DTBCK (see Telecom bus timings).

The signals for this mode are:

DTBDATA<7:0>Byte wide data output with either STM-

1 or STM-0 frame structure depending

on STMMODE selection.

DTBPAR DTBDATA<7:0> parity check. An odd

parity bit calculation accompanies each data byte input (including the bytes filling the SOH, AUP and HPOH loca-

tions).

DTBCK Telecom Bus byte clock output 6.48

MHz (STM-0) and 19.44 MHz (STM-1)

mode.

DTBPAYEN A High on this output indicates the pres-

ence of the VC-4 (STM1 mode) or the VC-3 with two stuffed columns (STM0 mode). A Low indicates the presence of the SOH bytes and the AU Pointers'

bytes.

DTBH4EN Output indicates the multi-frame start

position. This signal is High during one complete frame every four frames and Low for the remaining three frames The Low to High or High to Low transition occurs at the H4 location, and the MTBH4EN output is High on the J1 byte position following the "00" value of H4.

DTBJ0J1EN Output indicates J0 and J1 byte locations

relative to the receive signal. MTBJ0J1EN can be configured via reg-

ister 81H in two ways:

•A single pulse at J0 position and a single pulse at J1 position indicates when the frame and the payload starts.

•A single pulse at J0 position, a single pulse at J1 position and a double pulse

on J1 every four frames indicating a

multiframe.

DTBTUGEN1 A High on this output indicates the loca-

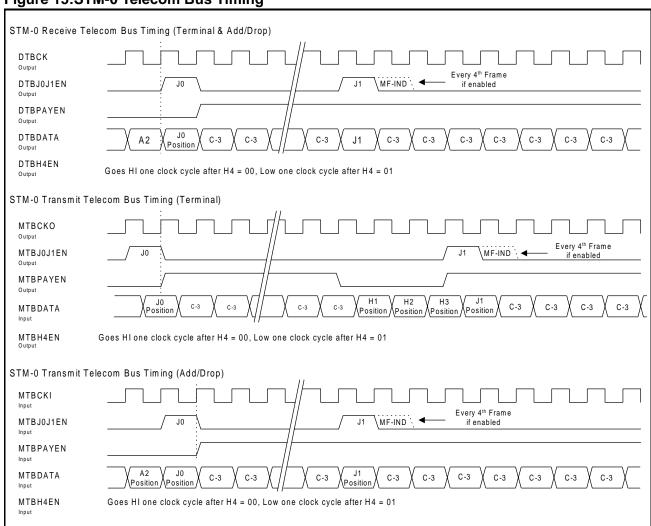
tion of TUG3 #1, plus the presence of the VC-4 POH bytes. In STM-0 this output

is tied High.

DTBTUGEN2 A High on this output indicates the loca-

tion of TUG3 #2, plus the presence of the VC-4 POH bytes (but not the stuffed column) In STM-0 this output is tied High.

DTBTUGEN3 A High on this output indicates the loca-


tion of TUG3 #3, plus the presence of the VC-4 POH bytes (but not the stuffed column) In STM-0 this output is tied High.

Figures 15 and 16 show the relation of timing reference and data signals on the Telecom bus.

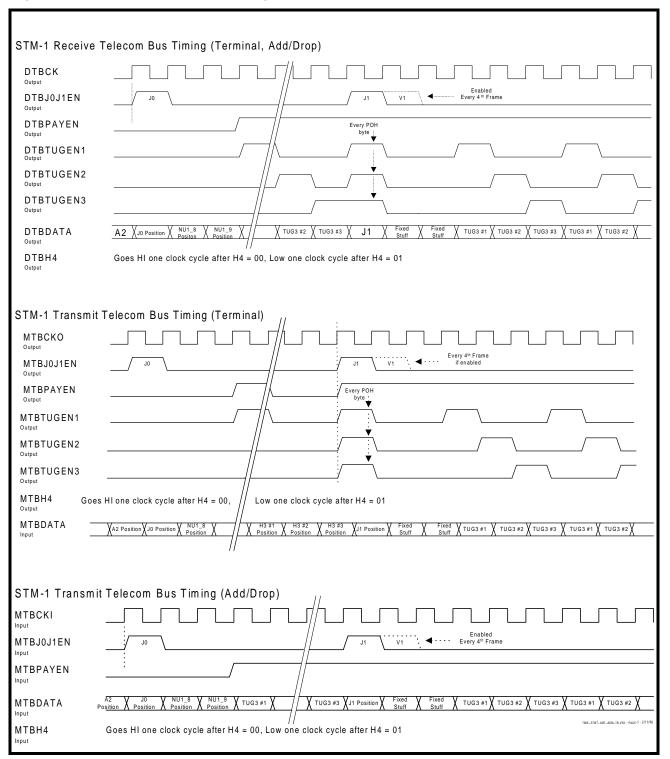

Figure 15:STM-0 Telecom Bus Timing

Figure 16:STM-1 Telecom Bus Timing

Protection Bus Interface Timing

This is the interface between the SXT6051 "Master" and the SXT6051 "Slave" in a one for one protection mode. The signals for the configurations are listed in this section.

Transmitter "Master" in 1+1 Protection Configuration

The signals for this configuration are:

MMSPPDATA<7:0>:Data byte output with a STM-1 or

STM-0 frame structure depending on STMMODE. Only the AU-4 (STM-1) or AU-3 (STM-0) data bytes are valid (pointers included).

MMSPPCKO Transmit Protection Bus byte clock

output (6.48 MHz in STM-0 & 19.44 MHz in STM-1 mode). This clock has the same exact frequency as the transmit clock reference.

Note that all transitions of the Transmit Protection Bus Data (MMSPPDATA<7:0>) and Timing references (MMSPPJ0EN and MMSPPAUEN) are in phase with the rising edge of this clock. This clock is also used as the RSOH & MSOH serial bus (TSOH bus) clock

reference.

MMSPPCKI Input is not used (can be tied to

ground).

MMSPPJ0JEN Output indicates J0 byte location. It

is a single pulse (active High) when the J0 byte is present on the MMSP-

PDATA<7:0> data bus.

MMSPPAUEN A High output indicates the pres-

ence of the VC-4 (STM-1) or the VC-3 + 2 stuffed columns (STM-0) bytes on the MMSPPDATA<7:0> data bus. A Low indicates the presence of the SOH + AU Pointers bytes. This pin is used as a test point or in the Ring Protection for a Fiber ADM application (see Application Note SDH Chip Set on the fiber).

Transmitter "Slave" in 1+1 Protection Configuration

The signals for this configuration are:

MMSPPDATA<7:0> Data byte input with a STM-1 or

STM-0 frame structure depending on STMMODE. Only the AU-4 (STM-1) or AU-3 (STM-0) data bytes are valid (pointers included).

MMSPPCKI Transmit Protection Bus byte clock

input (6.48 MHz in STM-0 and 19.44 MHz in STM-1 mode). This clock has the same exact frequency as the transmit frame clock reference. Data and timing reference are internally re-sampled by the falling

edge of this clock.

MMSPPCKO This output is not part of the Protec-

tion bus, but can be used as the transmit RSOH and MSOH serial bus (TSOH bus) clock reference on

the Slave SXT6051.

MMSPPJ0JEN This input indicates J0 byte loca-

tion. It is a single pulse (active High) when the J0 byte is present on the MMSPPDATA<7:0> data bus. It is used to synchronize the transmit frame, to ensure frame alignment of the Master and Slave SXT6051.

MMSPPAUEN Output is not used (tri-stated)

Receive"Master" in 1+1 Protection Configuration

The signals for this configuration are:

DMSPPDATA Data byte input with an STM-1 or

STM-0 frame structure depending on STMMODE. This bus includes also the SOH bytes to be processed for protection

switching.

DMSPPCKI Receive Protection Bus byte clock input

(6.48 MHz in STM-0 and 19.44 MHz in

STM-1 mode).

Note that all transitions of the Receive Protection Bus Data (DMSPP-DATA<7:0>) and Timing references (DMSPPJ0EN and DMSPPAUEN) are in phase with the rising edge of this

clock.

DMSPPCKO This output is not used for the MSP bus.

It is used as the Serial RSOH and MSOH

bus (RSOH bus) clock reference

DMSPPJ0JEN This input indicates J0 byte location. It is

a single pulse (active High) indicating the presence of the J0 byte on the DMSP-PDATA<7:0> transmit data bus. (Used for protection bus K1/K2 byte recovery).

DMSPPAUEN A High on this input indicates the pres-

ence of the VC-4 (STM-1) or the VC-3 + 2 stuffed columns (STM-0) bytes on DMSPPDATA<7:0>. A Low indicates SOH + AU Pointer bytes.

DMSPPSF Signal Fail input indicator from the

SXT6051 slave. Active High.

DMSPPSD Signal Degrade input indicator from the

SXT6051 slave. Active High.

Receive "Slave" Configuration (1+1 Protection)

The signals for this configuration are:

DMSPPDATA Data byte output with a STM-1 or

STM-0 frame structure depending on STMMODE. This bus also includes the SOH byte to be processed for protection

switching.

DMSPPCKI This input is not used.

DMSPPCKO Receive Protection Bus byte clock out-

put (6.48 MHz in STM-0 and 19.44 MHz

in STM-1 mode).

Note that the transitions of the Receive Protection bus Data (DMSPPDATA) and Timing references (DMSPPJ0EN & DMSPPAUEN) are in phase with the rising edge of this clock. This clock is also used as the receive RSOH and MSOH serial bus (RSOH bus) clock reference.

DMSPPJ0JEN This output indicates the J0 byte loca-

tion. It is a single pulse (active High) indicating the presence of the J0 position on the DMSPPDATA<7:0> data bus. (Used for protection bus K1/K2 byte

recovery by the Master).

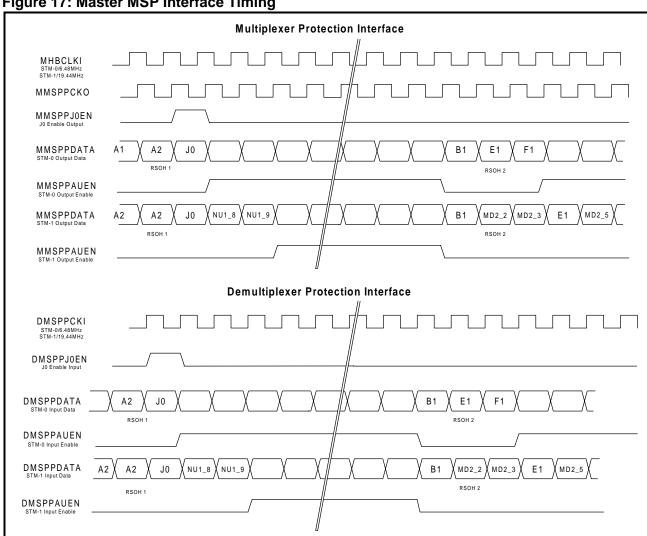
DMSPPAUEN A High on this output indicates the pres-

ence of the VC-4 (STM-1) or the VC-3 + 2 stuffed columns (STM-0) bytes on the DMSPPDATA<7:0> data bus. A Low indicates the position of the SOH + AU

Pointers bytes.

DMSPPSF Signal Fail output indicator. Active

High.


DMSPPSD Signal Degrade output indicator. Active

High.

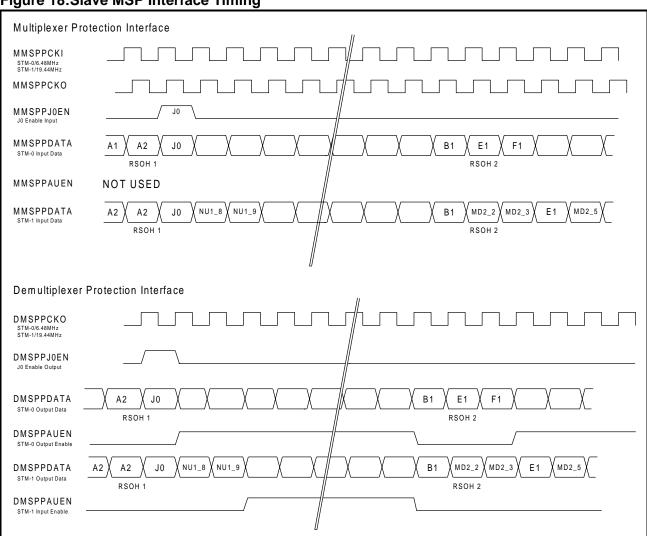

Figure 17: Master MSP Interface Timing

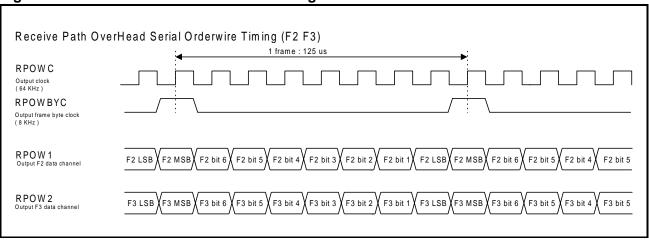
Figure 18:Slave MSP Interface Timing


OverHead Byte Access Timing

F2 and F3 Digital Channel Functional Timing

Transmit side access

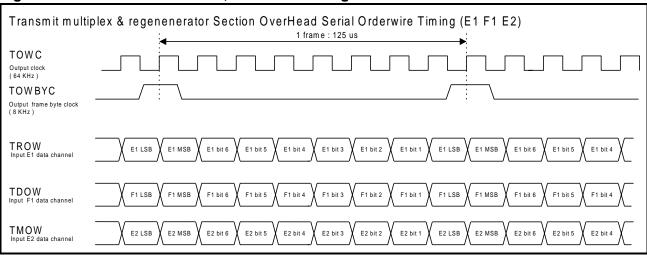
- Data input are TPOW1 and TPOW2 input.
- Clock reference is TPOWC. This 64 KHz signal is a square wave.
- Byte reference is TPOWBYC.
- Both the clock reference and the byte reference are synchronous with the transmit VC.


Figure 19:Transmit F2 and F3 Orderwire Timing

Receive side access

- Data output are RPOW1 and RPOW2 input.
- Clock reference is RPOWC. This 64 KHz signal is a square wave.
- Byte reference is RPOWBYC.
- Both the clock reference and the byte reference are synchronous with the receive VC.

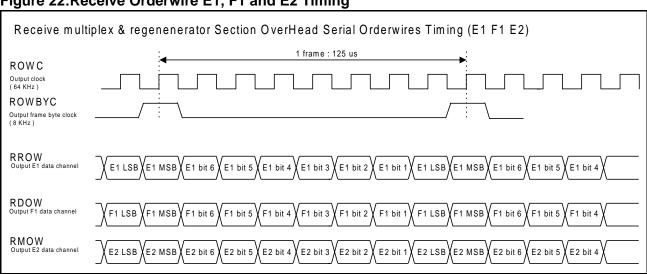
Figure 20:Receive F2 and F3 orderwire timing



E1, E2 and F1 Orderwire Channel Functional Timing

Transmit Timing

- Data input are TROW TMOW and TDOW
- Clock reference is TOWC. This 64 KHz signal is a square wave.
- Byte reference is TOWBYC.
- · Both the clock reference and the byte reference are synchronous with the transmit clock


Figure 21:Transmit orderwire E1, E2 and F1 timing

Receive timing

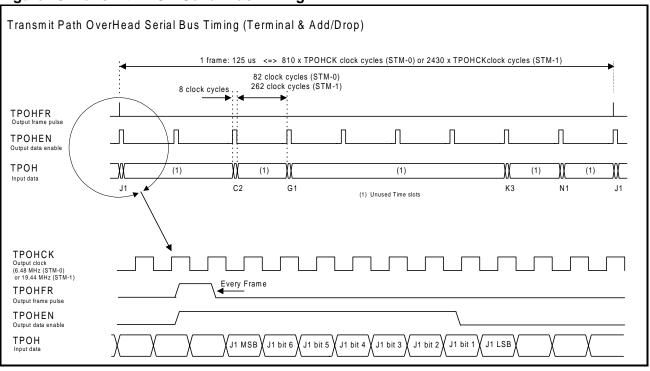
- Data outputs are RROW, RMOW and RDOW.
- Clock reference is ROWC. This 64 KHz signal is a square wave.
- Byte reference is ROWBYC.
- Both the clock reference and the byte reference are synchronous with the receive clock.

Figure 22:Receive Orderwire E1, F1 and E2 Timing

HPOH Bytes Serial Access Functional Timing

Transmit serial HPOH Timing

- Data Input TPOH
- Reference clock TPOHCK synchronous with the transmit clock
- Frame reference TPOHFR indicates the expected presence of J1 MSB at TPOH input
- Output enable TPOHEN indicates the expected presence of HPOH data at TPOH input

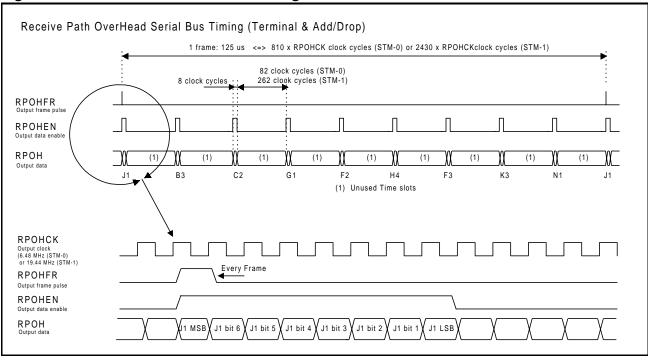

The TPOH is used to insert all POH byte except the B3, F2, H4 and F3 bytes. This serial interface uses a contra-directional gapped bus.

The clock reference output is TPOHCK at 19.44 MHz (STM-1) or 6.48 MHz (STM-0). This clock is synchronous with the VC-3 /VC-4 (STM-0/STM-1) or transmit frequency.

The TPOH data bits positions are indicated by the clock enable (output pin TPOHEN). In the STM-0 mode this enable signal is HIGH during 8 consecutive clock cycles (POH byte), then LOW during 90 - 8 = 82 clock cycles in STM-0. In STM-1 mode the TPOHEN is HIGH for 8 clock cycles and LOW for 270 -8 = 262 clock cycles.

TPOHFR indicates the position of J1 MSB.

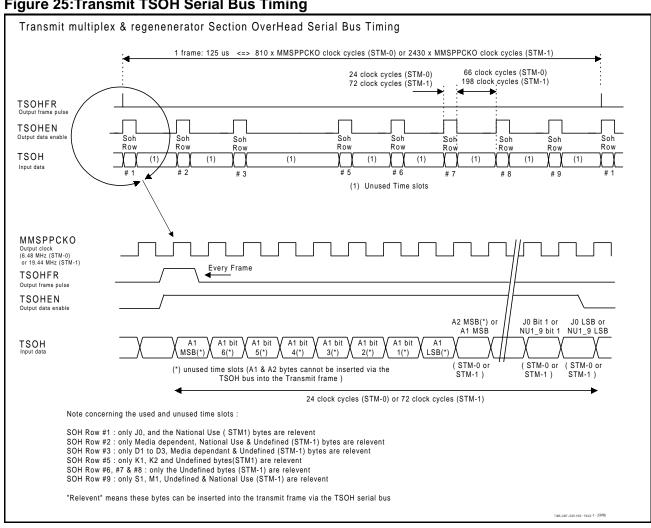
Figure 23:Transmit HPOH Serial Bus Timing



Receive Serial HPOH Timing

- Data Input RPOH
- Reference clock RPOHCK synchronous with the receive clock
- Frame reference RPOHFR indicates presence of J1 MSB at RPOH output
- Output enable RPOHEN indicates presence of RPOH clock at RPOH output

Figure 24:Receive HPOH Serial Bus Timing

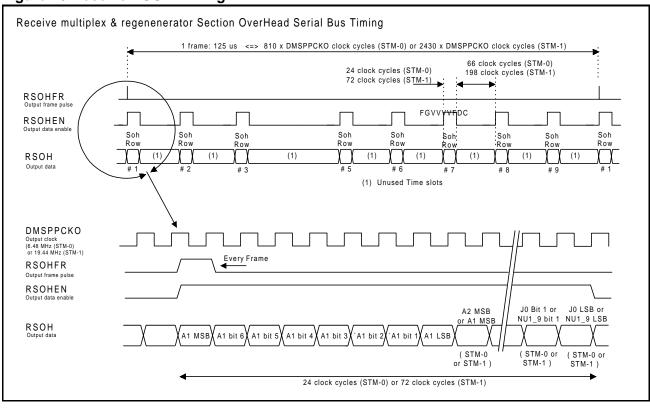


SOH Overhead Access Functional Timing

Transmit Side SOH Serial Timing

- · The transmit side of SOH interface allows insertion of each SOH byte (except A1, A2, B1 and B2 bytes), into the MSOH and RSOH via a serial contra-directional gapped interface.
- The reference clock is supplied by MMSPPCKO at 19.44MHz (STM-1) or at 6.48 MHz (STM-0). It is at the same frequency as the transmit clock. Frame pulse TSOHFR indicates the start of the frame (A1 MSB position).
- Enable signal TSOHEN is high (enabled) for all bytes of the SOH (see Figure 10). The TSOHEN signal is not enabled during AU pointer bytes.
- · The SXT6051 will latch the data on the TSOH pin, synchronized with the timing signals. All data input will be output from the SXT6051 one SDH row after it is latched.

Figure 25:Transmit TSOH Serial Bus Timing

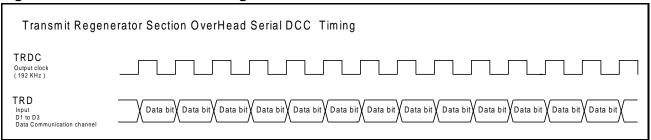


Receive Side SOH Serial Timing

The receive side SOH interface provides all the signals necessary to collect the RSOH and MSOH bytes via a serial co-directional gapped interface described below:

- Frame pulse RSOHFR indicates the start of the frame (A1 MSB position)
- The DMSPPCKO clock (MSP bus clock) is used for clocking the RSOH output.
- Enable signal RSOHEN is high (active) for all bytes of the SOH (see Figure 10).
- On the receive side, the data is immediately output on the RSOH pin when it is received; there is not a row delay as on the transmit side.

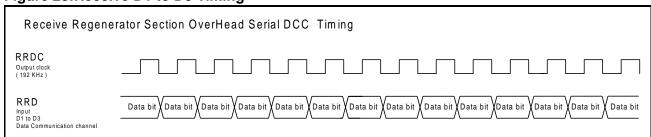
Figure 26:Receive RSOH Timing



D1 to D3 Data Communication Channel Functional Timing

Transmit Side Access

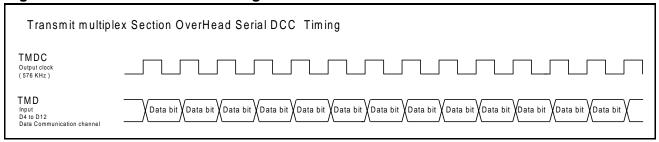
- Data input is TRD
- Clock reference is TRDC. This 192 KHz signal is a square wave, synchronous with the transmit clock
- TOWBYC can be used to identify the byte position relative to the transmit frame


Figure 27:Transmit D1 to D3 Timing

Receive Side Access

- Data Output is RRD
- Clock reference is RRDC. This 192 KHz signal is a square wave synchronous with the receive clock
- ROWBYC can be used to identify the byte position relative to the receive frame

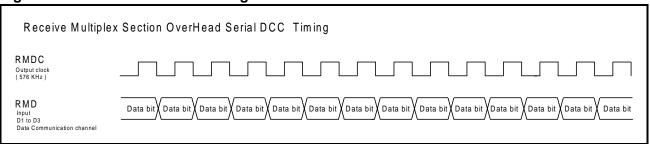
Figure 28: Receive D1 to D3 Timing



D4 to D12 Data Communication Channel

Transmit Side Access

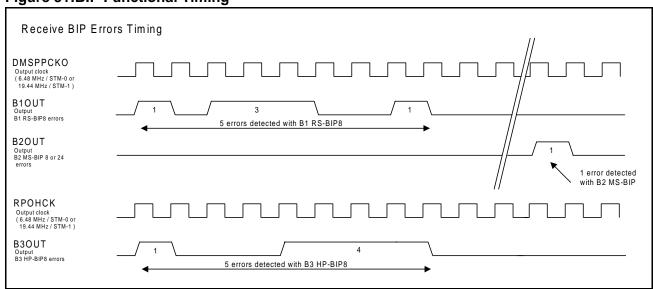
- Data Input is TMD
- Clock Reference is TMDC. This 576 KHz signal is a square wave synchronous with the transmit clock
- TOWBYC can be used to identify the byte position relative to the transmit frame


Figure 29:Transmit D4 to D12 Timing

Receive Side Access

- Data Output is RMD
- Clock reference is RMDC. This 576 KHz signal is a square wave synchronous with the receive clock
- ROWBYC can be used to identify the byte position relative to the receive frame

Figure 30:Receive D4 to D12 Timing



BIP Receive Functional Timing

Figure 31:BIP Functional Timing

TEST SPECIFICATIONS

Notes

Minimum and maximum values in tables 9 though 11 represent the performance specifications of the SXT6051 and are guaranteed by test, unless otherwise noted. Minimum and maximum values in tables 12 though 27 and figures 32 through 45 represent the performance specifications of the SXT6051 and are guaranteed by design and are not subject to production testing.

All timing parameters assume that the outputs have a 50 pF load unless otherwise noted.

Table 9: Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc		6.0	V
DC Voltage on any pin ¹	Vin	-2.0	+7.0	V
Ambient operating temperature	Тор	-40	+85	С
Storage temperature range	Tst	-65	+150	С

^{1.} Minimum voltage is -0.6V D.C. which may undershoot to -2.0 V for pulses of less than 20 ns

CAUTION

Exceeding these values may cause permanent damage.
Functional operation under these conditions is not implied
Exposure to maximum rating conditions for extended periods may affect device reliability

Table 10: Operating Conditions¹

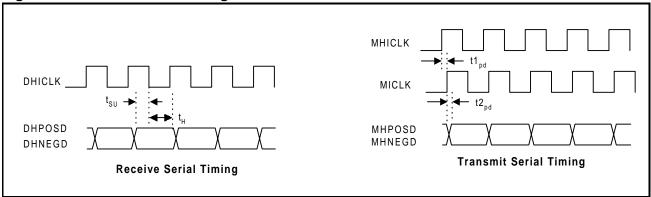
Parameter	Symbol	Min	Typ ²	Max	Unit
Recommended Operating Temperature	Тор	-40	-	+85	С
Supply Voltage - I/O Ring	VCC5	4.75	5	5.25	V
Supply Voltage - Core	VCC3	3.15	3.3	3.45	V
Supply Current - I/O Ring ¹	IDD5	-	75	90	mA
Supply Current - Core ¹	IDD3	ı	100	120	mA

^{1.} The operating condition parameters are for a STM-1 master 1+1 terminal protection configuration with receive re-timing enabled and during microprocessor access (worst case configuration)

^{2.} Typical values are at 25C and nominal voltage and are provided for design aid only; not guaranteed nor subject to production testing

^{3.} Voltages with respect to ground unless otherwise specifie

Table 11: 5 V Digital I/O Characteristics


Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
TTL Input Low Voltage	Vil			0.8	V	
TTL Input High Voltage	Vih	2.0			V	
TTL Switching Threshold	VT		1.4		V	VCC-5.0V, 25C
Input Leakage High	Іін			10	uA	VIN-VCC=5.5V
Output Low Voltage	Vol		0.2	0.4	V	VCC=4.5V
Output High Voltage	Vон	0.7xVcc	4.2			VCC=4.5V
Output Leakage (no pull up)	Ioz	-10		10	uA	VIN=VDD=5.5V

^{1.} All values applicable over recommended Voltage and Temperature operating range unless otherwise noted

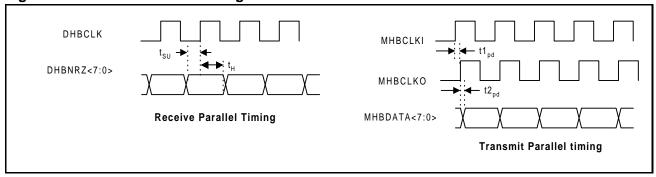

Figure 32:Serial Interface Timing

Table 12: Serial Interface Timing Parameters

Parameter	Symbol	Min	Тур	Max	Unit
DHPOSD & DHNEGD setup time to DHICLK falling edge.	t _{su}	1.5			ns
DHPOSD & DHNEGD hold time from DHICLK falling edge.	t _h	1.5			ns
MHICLK rising edge to MICLK rising edge	t1 _{pd}	5		15.5	ns
MICLK rising edge to MHPOSD and MHNEGD	t2 _{pd}	0.5		3	ns

Figure 33:Parallel Interface Timing

Table 13: Parallel Interface Timing Parameters

Parameter	Symbol	Min	Тур	Max	Unit
DHBDATA<7:0> setup time to DHBCLK rising edge.	t _{su}	3			ns
DHBDATA<7:0> hold time from DHBCLK rising edge.	t _h	2			ns
MHBCLKI rising edge to MHBCLKO rising edge	t1 _{pd}	7		18	ns
MHBCLKO rising edge to MHBDATA<7:0>	t2 _{pd}	2		7	ns

DRETCLK

DTBCK

DTBDATA
DTBPAYEN
DTBJ0J1EN

t_{RET1pd}

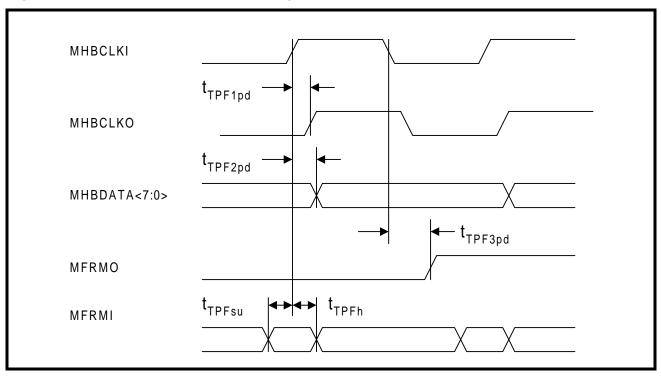
t_{RET2pd}

t_{RET2pd}

t_{RET2pd}

t_{RET1pd}

Figure 34:Receive Re-Timing Function Timing


Table 14: Receive Re-Timing Function Timing Parameters

Parameter	Symbol	Min	Тур	Max	Unit
DRETFRMI setup time to DRETCLK falling edge.	t _{RETsu}	0.5			ns
DRETFRMI hold time from DRETCLK falling edge.	t _{RETh}	4			ns
DRETCLK falling edge to DTBCK rising edge	t _{RET1pd}	5		14	ns
Delay from DRETCLK falling edge any telecom bus output.	t _{RET2pd}	7		20	ns

Figure 35:Transmit Frame Parallel Timing

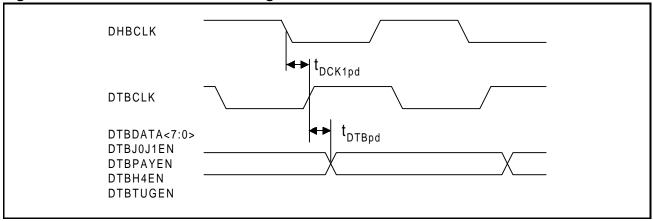
Table 15: Transmit Frame Parallel Timing Parameters

Parameter	Symbol	Min	Тур	Max	Unit
MFRMI setup time to MHBCLKI rising edge.	t _{TPFsu}	0			ns
MFRMI hold time from MHBCLKI rising edge.	t _{TPFh}	6.5			ns
MHBCLKI rising edge to MHBCLKO rising edge	t _{TPF1pd}	7		18	ns
MHBCLKI rising edge to MHBDATA<7:0>	t _{TPF2pd}	9		25	
MHBCLKI falling edge to MFRMO rising edge	t _{TPF3pd}	8.5		23	ns

Figure 36:Transmit Frame Serial Timing

Table 16: Transmit Frame Serial Timing Parameters

Parameter	Symbol	Min	Тур	Max	Unit
MFRMI setup time to MHICLK rising edge.	t _{TSFsu}	2			ns
MFRMI hold time from MHICLK rising edge.	t _{TSFh}	1.5			ns
MHICLK rising edge to MICLK rising edge	t _{TSF1pd}	5		15.5	ns
MHICLK rising edge to MHPOSD and MHNEGD	t _{TSF4pd}	5.5		18.5	ns
MHICLK rising edge to MFRMO rising edge	t _{TSF3pd}	7 ¹ 6 ²		18 ¹ 15 ²	ns
		0-		13 -	
MHICLK rising edge to MMSPPCKO rising edge	t _{TSF2d}	9		22.5	ns


^{1. 50} pF load on output

^{2. 20} pF load on output

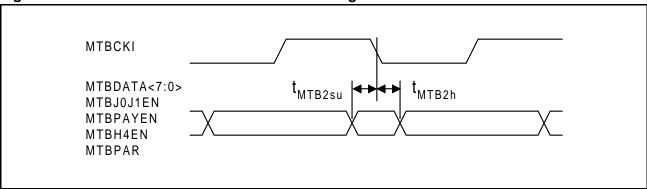

Figure 37:Receive Telecom Bus Timing

Table 17: Receive Telecom Bus Timing Parameters

Parameter	Symbol	Min	Тур	Max	Unit
DHBCLK falling edge to DTBCLK rising edge	t _{DCK1pd}	8		22	ns
Delay from DTBCLK rising edge to any Telecom bus output	t _{DTBdp}	2		6	ns

Figure 38:ADM Mode Transmit Telecom Bus Timing

Table 18: ADM Mode Transmit Telecom Bus Timing Parameters

Parameter	Symbol	Min	Тур	Max	Unit
Setup time for any telecom bus input to MTBCKI falling edge	t _{MTB2su}	0.5			ns
Hold time for any telecom bus input from MTBCKI falling edge	t _{MTB2h}	5			ns

MTBCKO

MTBJ0J1EN
MTBPAYEN
MTBH4EN
MTBTUGEN

MTBDATA<7:0>
MTBDATA<7:0>
MTBPAR

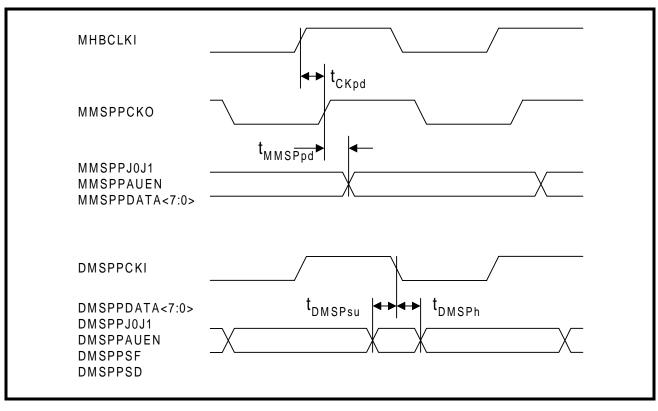
tMTB1su

tMTB1su

tMTB1h

MTBDATA

Figure 39:Terminal Mode Transmit Telecom Bus Timing


Table 19: Terminal Mode Transmit Telecom Bus Timing Parameters:

Parameter	Symbol	Min	Тур	Max	Unit
MHBCLKI rising edge to MTBCKO rising edge.	t _{MCK1pd}	3		8.5	ns
Delay from MTBCKO rising edge to any telecom bus output.	t _{MTBpd}	5.5		15	ns
Setup time for any telecom bus input to MTBCKO falling edge.	t _{MTB1su}	5			ns
Hold time for any telecom bus input from MTB-CKO falling edge.	t _{MTB1h}	-1			ns
Setup time for MMFRMI to MTBCKO falling edge.	t _{MTB2su}	5.5			ns
Hold time for MMFRMI from MTBCKO falling edge.	t _{MTB2h}	-1.5			ns

Figure 40:Master Mode MSP Bus Timing

Table 20: Master Mode MSP Bus Timing Parameters

Parameter	Symbol	Min	Тур	Max	Unit
MHBCLKI edge to MMSPPCKO edge delay	t _{CKpd}	5		15	ns
MMSPPCKO rising edge to MMSPPDATA<7:0>, MMSPPAYEN and MMSPPJ0EN	t _{MMSPpd}	3		7	ns
DMSPPDATA<7:0>, DMSPPJ0EN and DMSPPAYEN setup time to DMSPPCKI falling edge	t _{DMSPsu}	1.5			ns
DMSPPDATA<7:0>, DMSPPJ0EN and DMSPPAYEN hold time from DMSPPCKI falling edge	t _{DMSPh}	7			ns

DHBCLK ← t_{DCKpd} DMSPPCKO $t_{\rm DMSPpd}$ DMSPPDATA<7:0> DMSPPJ0J1 **DMSPPAUEN DMSPPSD** DMSPPDF MMSPPCKI **←** t_{MCKpd} MMSPPCKO t_{MMSPh} t_{MMSPsu} MMSPPDATA<7:0> MMSPPJ0J1

Figure 41:Slave Mode MSP Bus Timing

Table 21: Slave Mode MSP Bus Timing Parameters

Parameter	Symbol	Min	Тур	Max	Unit
DHBCLK falling to DMSPPCKO rising	t _{DCKpd}				
DMSPPCKO rising edge to DMSPPDATA<7:0>, DMSP-PAUEN, DMSPPJ0EN, DMSPPSD, DMSPPSF	t _{DMSPpd}	3.5		9	ns
MMSPPCKI falling to MMSPPCKO falling	t _{MCKpd}	6		16	ns
MMSPPDATA<7:0> and MMSPPJ0EN setup time to MMSPPCKI falling edge	t _{MMSPsu}	0.5			ns
MMSPPDATA<7:0> and MMSPPJ0EN hold time from MMSPPCKI falling edge	t _{MMSPh}	5.5			ns

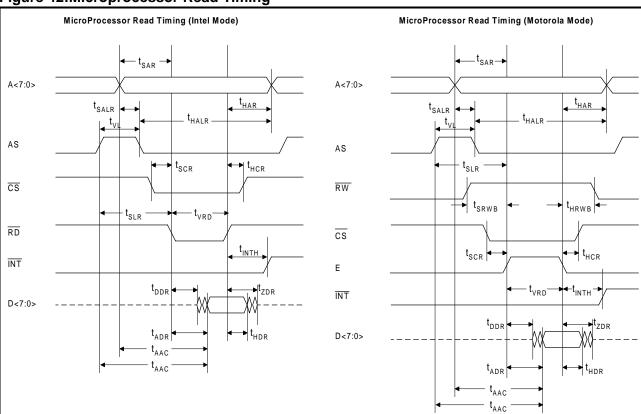
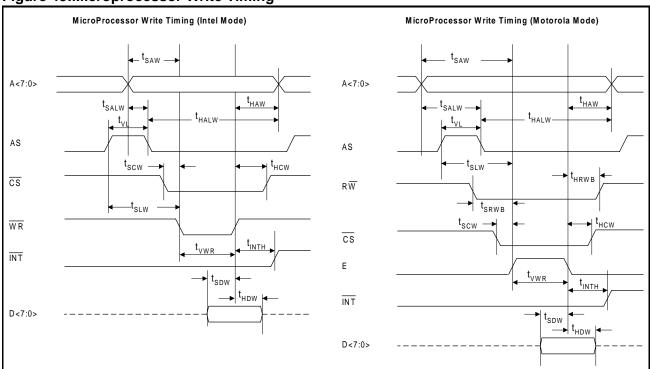


Figure 42:Microprocessor Read Timing

Table 22: Microprocessor Data Read Timing Parameters

Parameter	Symbol	Min	Тур	Max	Unit
A<7:0> setup time to active read	t _{SAR}	12	-	-	ns
A<7:0> hold time from inactive read	t _{HAR} 1	1	=	-	ns
A<7:0> setup time to latch	t _{SALR} ²	1	-	-	ns
A<7:0> hold time from latch	t _{HALR} ²	2	-	-	ns
Valid latch pulse width	t _{VL} ²	1.5	-	-	ns
AS rising edge to active read setup	t _{SLR} ²	13	-	-	ns
RWB setup to active read	t _{SRWB}	-1	-	-	ns
RWB hold from inactive read	t _{HRWB}	2	-	-	ns
CS setup to active read	t _{SCR}	2	-	-	ns
CS hold from inactive read	t _{HCR}	2	-	-	ns
D<7:0> access time from valid address	t _{AAC}	-	-	40	ns
(or AS whichever comes last for muxed AD bus)					
D<7:0> bus driven from active read	t _{DDR}	6.5	-	-	ns
D<7:0> access time from active read	t _{ADR}	-	-	19	ns
D<7:0> hold from inactive read	t _{HDR}	7	-	-	ns
D<7:0> HIgh impedance from inactive read	t _{ZDR}	-	-	17.5	ns
Valid read pulse width	t _{VRD} ³	T+2	-	-	ns
Inactive read to inactive INT (due to reset on read feature)	t _{INTH} ³	3*T + 12	-	4*T + 36	ns

^{1.} For non multiplexed Address and Data bus (AS tied high)



^{2.} For multiplexed Address and Data bus (\overline{AS} used as address latch enable)

^{3.} T is the minimum cycle time of either MTBYCK or DTBYCK (typically 51.44 ns for STM1, 154.32 ns for STM0)

 $^{4. \ \} Consecutive\ reads\ from\ the\ on-chip\ RAM\ ("expected\ and\ "transmitted"\ J0\ \&\ J1\ strings)\ must\ be\ separated\ by\ more\ than\ 4*T$

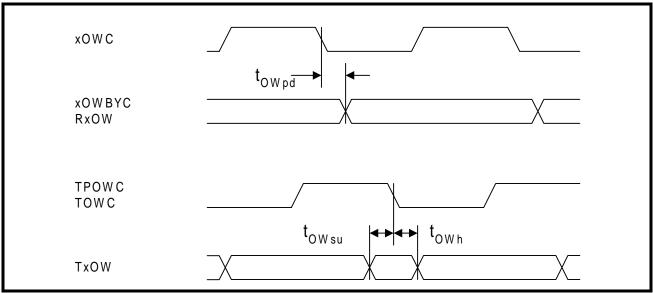
Figure 43:Microprocessor Write Timing

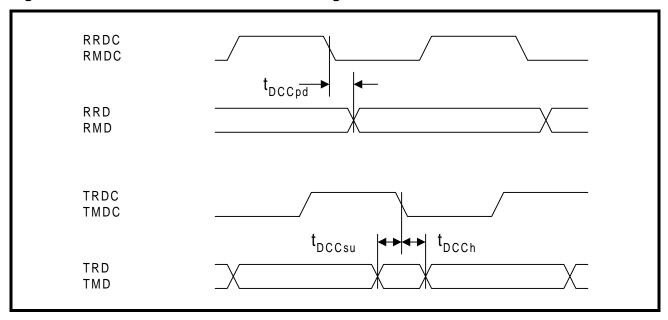
Table 23: Microprocessor Data Write Timing Parameters

Parameter	Symbol	Min	Тур	Max	Unit
A<8:0> setup time to active write	t _{SAW}	6	-	-	ns
A<8:0> hold time from inactive write	t _{HAW} 1	4	-	-	ns
A<8:0> setup time to latch	t _{SALW} ²	1	-	-	ns
A<8:0> hold time from latch	t _{HALW} ²	2	-	-	ns
Valid latch pulse width	t _{VL} ²	1.5	-	-	ns
AS rising edge to active write setup	t _{SLW} ²	7	-	-	ns
RWB setup to active write	t _{SRWB}	2	-	-	ns
RWB hold from inactive write	t _{HRWB}	0.2	-	-	ns
CS setup to active write	t _{SCW}	2	-	-	ns
CS hold from inactive write	t _{HCW}	2	-	-	ns
D<7:0> setup to inactive write	t_{SDW}	2.5	-	-	ns
D<7:0> hold from inactive write	t _{HDW}	7	-	-	ns
Valid write pulse width	t _{VWR} ³	T+2	-	-	ns
Inactive write to inactive INT (due to interrupt masking)	t _{VWR}	12	-	37	ns

- For non multiplexed Address and Data bus (AS tied high)
 For multiplexed Address and Data bus (AS used as address latch enable)
 T is the minimum cycle time of either MTBYCK or DTBYCK (typically 51.44 ns for STM1, 154.32 ns for STM0)
- 4. There must be more than 4*T between the rising edge of a write to a BIP or REI error counter and the falling edge of the read to a BIP or REI
- 5. Consecutive writes to the on-chip RAM ("expected and "transmitted" J0 & J1 strings) must be separated by more than 4*T

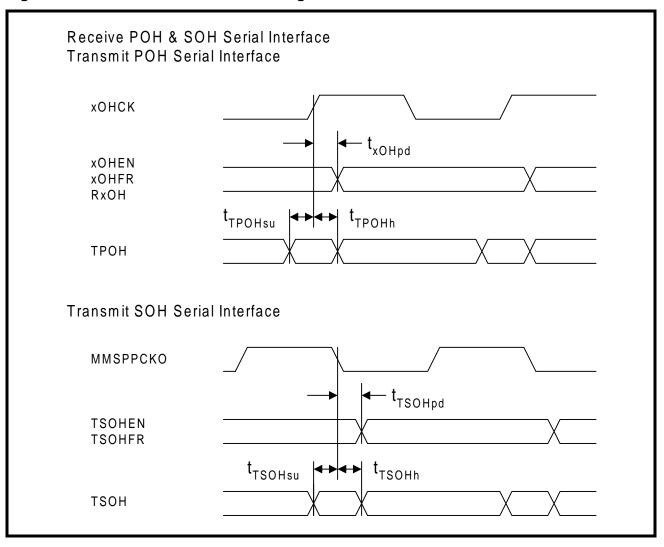
Figure 44:Orderwire E1, F1 & E2, F2 & F3 Timing




Table 24: Orderwire E1, F1 & E2, F2 & F3 Timing Parameters

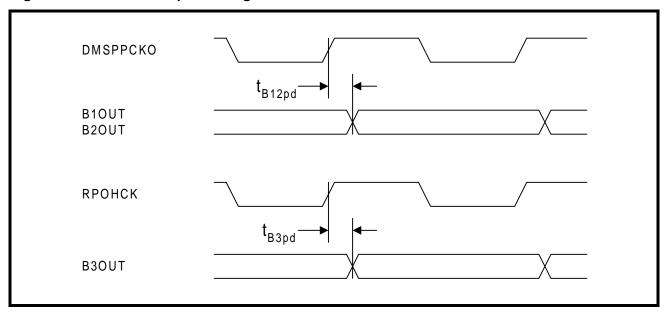
Parameter	Symbol	Min	Тур	Max	Unit
TOWC falling edge to TOWBYC	t _{OWpd}	0.0		0.5	ns
TROW, TDOW or TMOW setup time to falling	t _{OWsu}	-124 (STM0)			ns
edge of TOWC		-22 (STM1)			
TROW, TDOW or TMOW hold time from falling	$t_{\rm OWh}$	145 (STM0)			ns
edge of TOWC		42 (STM1)			
ROWC falling edge to ROWBYC	t_{OWpd}	-0.5		0.0	ns
ROWC falling edge to RROW, RDOW or RMOW	t _{OWpd}	153 (STM0)		155 (STM0)	ns
		50 (STM1)		52 (STM1)	
TPOWC falling edge to TPOWBYC	t _{OWpd}	-0.5		0.5	ns
TPOW1 or TPOW2 setup time to falling edge of	t _{OWsu}	-126 (STM0)			ns
TPOWC		-23 (STM1)			
TPOW1 or TPOW2 hold time from falling edge of	t_{OWh}	145 (STM0)			ns
TPOWC		42 (STM1)			
RPOWC falling edge to RPOWBYC	t_{OWpd}	-0.2		0.2	ns
RPOWC falling edge to RPOW1 or RPOW2	t _{OWpd}	153 (STM0)		154 (STM0)	ns
		51 (STM1)		52 (STM1)	

Figure 45:Data Communication Channel Timing


Table 25: Data Communication Channel Timing Parameters

Parameter	Symbol	Min	Тур	Max	Unit
TRD setup time to falling edge of TRDC	t _{DCCSU}	-127 (STM0) -24 (STM1)			ns
TRD hold time from falling edge of TRDC	t _{DCCH}	145 (STM0) 42 (STM1)			ns
TMD setup time to falling edge of TMDC	t _{DCCSU}	-125 (STM0) -23 (STM1)			ns
TMD hold time from falling edge of TMDC	t _{DCCh}	145 (STM0) 42 (STM1)			ns
RRDC falling edge to RRD	t _{DCCPD}	154 (STM0) 51 (STM1)		155 (STM0) 52 (STM1)	ns
RMDC falling edge to RMD	t _{DCCPD}	154 (STM0) 51 (STM1)		155 (STM0) 52 (STM1)	ns

Figure 46:Serial Overhead Interface Timing


Table 26: Serial Overhead Interface Timing Parameters

Parameter	Symbol	Min	Тур	Max	Unit
TPOHCK rising edge to TPOHEN and TPOHFR	t _{xOHpd}	0.7		4	ns
RSOHCK rising edge to RSOHEN, RSOHFR and RSOH	t _{xOHpd}	3		9	ns
RPOHCK rising edge to RPOHEN, RPOHFR and RPOH	t _{xOHpd}	0.5		3	ns
TPOH setup time to TPOHCK rising edge	t _{TPOHsu}	17			ns
TPOH hold time from TPOHCK rising edge	t _{TPOHh}	-6			ns
MMSPPCKO falling edge to TSOHEN and TSOHFR	t _{TSOHpd}	2.5		8.5	ns
TSOH setup time to MMSPPCKO falling edge	t _{TSOHsu}	11.5			ns
TSOH setup time from MMSPPCKO falling edge	t _{TSOHh}	-4			ns

Figure 47:BIP Alarm output Timing

Table 27: BIP Alarm output Timing Parameters

Parameter	Symbol	Min	Тур	Max	Unit
DMSPPCKO rising edge to B1OUT and B2OUT	t _{B12pd}	5.5		15	ns
RPOHCK rising edge to B3OUT	t _{B3pd}	3		11	ns

MICROPROCESSOR INTERFACE & REGISTER DESCRIPTION

Microcontroller Interface

This section contains a description of the asynchronous microprocessor interface. A microprocessor should be connected to the SXT6051 for reading and writing data via the microprocessor interface pins.

The microprocessor interface is a generic asynchronous interface, including an address bus (A<7:0>), data bus (DATA<7:0>) and handshaking pins (\overline{WR}/RW , \overline{RD}/E , \overline{CS} , and AS). The MCUTYPE input pin indicates the type of microprocessor interface used – Intel or Motorola. There is also an INT output pin that indicates unmasked active interrupts microprocessor to the microprocessor.

Intel interface

The Intel interface is indicated by driving the MCUTYPE input pin High. It uses the \overline{WR}/RW input pin as \overline{WR} and the \overline{RD}/E input pin as \overline{RD} .

A read cycle is indicated to the SXT6051 by the microprocessor forcing a Low on the \overline{RD} pin with the \overline{WR} pin held High.

A write cycle is indicated to the SXT6051 by the microprocessor forcing a Low on the \overline{WR} pin with the \overline{RD} pin held High.

Both cycles require the \overline{CS} pin to be Low and the microprocessor to drive the A<7:0> address pins. In the case of the write cycle, the microprocessor is also required to drive the DATA<7:0> data pins. In the case of the read cycle, the SXT6051 drives the DATA<7:0> data pins.

When a multiplexed data/address bus is used, the falling edge of the AS input latches the address provided on the muxed bus (the muxed bus will be connected to both the A<7:0> and DATA<7:0>). If the address and data are not multiplexed the AS pin should be tied High.

Motorola interface

The Motorola interface is indicated by driving the MCU-TYPE input pin Low. It uses the \overline{WR}/RW input pin as \overline{RW} and the \overline{RD}/E input pin as E.

A read cycle is indicated to the SXT6051 by the microprocessor forcing a High on the \overline{RW} pin. A write cycle is indicated to the SXT6051 by the microprocessor forcing a Low on the RWR pin.

A Low on the E input initiates both cycles. The E input is connected to the E output from the Motorola microprocessor and is typically a 50% duty cycle waveform with a frequency derived from the microprocessor clock.

Both cycles require the \overline{CS} pin to be Low and the microprocessor to drive the A<7:0> address pins. In the case of the write cycle, the microprocessor is also required to drive the DATA <7:0> data pins. In the case of the read cycle, the SXT6051 drives the DATA<7:0> data pins.

When a multiplexed data/address bus is used, the falling edge of the AS input latches the address provided on the muxed bus (the muxed bus will be connected to both the A<7:0> and DATA<7:0>). If the address and data are not multiplexed the AS pin should be tied High.

Interrupt Handling

Interrupt Sources

There are three types of interrupt sources:

- Status change of a monitoring process: For example, the SXT6051 monitors the incoming STM frame for the correct framing pattern and updates the OofSt and LofSt status bits to indicate presence or absence of Out Of Frame and Loss Of Frame conditions. When the value of these status bits change an interrupt can be generated.
- Change in the contents of an overhead byte register: For example, the SXT6051 stores the incoming K1 (as well as others) Section Overhead byte in register 00H. When the value of the contents in this register changes an interrupt can be generated.
- Counter overflows: For example, the SXT6051
 monitors the B1 overhead byte for bit interleaved
 parity calculation errors. These errors are recorded in
 the B1 error counter (registers 46H and 45H). If this
 register pair overflows, an interrupt can be generated.

Interrupt Enables

In order for an interrupt source to affect the state of the INT output pin its associated interrupt enable bit must be SET. The setting (whether 0 or 1) of the interrupt enables does not affect the updating of the status registers, the overhead byte registers, interrupt registers or the counters.

Assuming the interrupt enable for a particular interrupt source is SET and the interrupt source is active, the input pin will be active.

Interrupt Clearing

The primary difference between each of interrupt types is the way its interrupt bits are cleared. In the discussion below it is assumed that the example interrupt sources have their interrupt enable bits SET.

1. Status change interrupt sources have their interrupt bits cleared when their status is read. For example, say the OofSt bit changes from zero to one (in frame to out of frame). Its interrupt bit (Oof, A0H<bit 0>) is SET by this event. When the microprocessor reads the register (C0H) containing the OofSt bit its interrupt bit will be CLEARED. If the OofSt bit subsequently changes from one to zero (out of frame to in frame) again its interrupt bit is SET by this event and then CLEARED when the status is read.

It should be noted that updates to status bits are not affected by the interrupt bit state. For example, the OofSt bit could change from a one to zero (generating an interrupt) and then before the microprocessor reads OofSt it could change back to one (this would have no affect on its interrupt bit since it would already be SET). When the microprocessor reads the OofSt bit it would read a one.

2. Interrupt sources associated with the contents of overhead byte registers, have their interrupt bits cleared when the particular overhead byte register is read. For example, the incoming K1 overhead byte is stored (after filtering) in the *RcvK1* register (register 00H). If the value of this register changes the *RcvK1Chg* bit is SET. It will clear when the *RcvK1* register is read.

See the following section for discussion concerning updates to an overhead byte register when its associated interrupt is active.

 Interrupt sources associated with counter overflows, have their interrupt bits cleared when the particular overflowing counter is buffered. See the following section for description of counter reading.

Status Registers Access

Due to the asynchronous nature of the microprocessor interface and timing differences during interrupt bit updates, it is possible that a status bit change can fail to SET its associated interrupt bit if the *AlmUpdDsbl* bit is not SET during a read of the status registers by the microprocessor. This situation is very difficult to achieve however, it can happen.

For this reason we encourage programmers to SET the *AlmUpdDsbl* bit before accessing the status registers during alarm processing. This effectively locks out internal processes that wish to access the status and interrupt bits during the time that the microprocessor is accessing these bits. After the microprocessor is done accessing the status registers it should CLEAR the *AlmUpdDsbl* bit so that internal processes may again update the status and interrupt bits.

C2, K3, K2, K1 and S1 Receive Byte Registers Access

The *BytChgUpdDsbl* is SET to disable updates to overhead byte registers when a particular overhead byte register's interrupt is active. For example, if both *RcvK1Chg* interrupt (see register A1H) and *BytChgUpdDsbl* (see register 50H) are SET, updates to *RcvK1* (see register 00H) will be disabled until *RcvK1* is read by the microprocessor. This allows a rapidly fluctuating incoming K1 byte value to be captured during system debug.

Note that this is also true for the K1 and K2 bytes received in the protection bus in a 1+1 Master configuration.

Counter Reading

Counters are read by first buffering their contents and then reading the buffer. They can be individually buffered or globally buffered. They are globally buffered by writing to register BfrAllCntrs (54H). They are individually buffered by writing to the most significant byte of a particular buffer. After buffering the counter the contents of the buffer is read at the address specified in the register definition.

For example, to read the contents of the B1 counter a write to register 46H (or 54H) is required (this write will clear the B1 overflow interrupt bit *B1OvrFlw*, A0H
bit 7> if it is SET). The contents of the buffer can now be read by reading registers 45H & 46H (in no particular order).

Register Address Map

The following notations and definitions are used in the register descriptions.

RO Read Only. Unless otherwise stated in the register description, writes have no affect. Note that

for some counter registers, a write to the MSByte resets the counter.

WO Write Only. Reads return undefined values.

R/W Read/Write. A register (or bit) with this attribute can be read and written.

Reserved Bits Some of the registers contain *reserved* bits. Software must deal correctly with reserved fields.

For reads, software must use appropriate masks to extract the defined bits and not rely on reserved bits being any particular value. In some cases, software must program reserved bit

positions to a particular value. This value is defined in the individual bit descriptions.

Default When the SXT6051 is reset, it sets its registers to predetermined default states. The default

state represents the minimum functionality feature set required to successfully bring up the system. Hence, it does not represent the optimal system configuration. It is the responsibility of software to properly determine the operating parameters, and optional system features that

are applicable, and to program the SXT6051 registers accordingly.

 $Default = X \qquad \qquad Undefined$

AIS Alarm Signal Indication

HPOH High Order Path OverHead

MSOH Multiplexer Section OverHead

OHT OverHead Terminator

RSOH Regenerator Section OverHead

RST Regenerator Section Termination

Table 28: Register Address Map (Sheet 1 of 4)

Address	Mnemonic	Register Name	Туре	Page #				
	Global Registers							
50H	OCR1	Operational Configuration 1	R/W	89				
51H	OCR2	Operational Configuration 2	R/W	90				
52H	CHIP_ID	Chip ID Number	RO	91				
54H	BUF_ACNTS	Buffer All Counters	WO	91				
	Rece	eive Regenerator Section Termination Registers						
40H	R_RSTC1	Receive RST Configuration 1	R/W	92				
47H	R_RSTC2	Receive RST Configuration 2	R/W	93				
41–42H	LOF_LMN	Loss of Frame L, M, and N Configuration	R/W	93				
44–43H	OOF_ECNT	Out Of Frame Event Counter	RO	94				
46–45H	B1_ERRCNT	B1 Error Counter	RO	94				
	Receive Reg	enerator and Multiplexer Section Termination Regis	ters					
0EH	J0_RSTR_C	J0 Expected String Control	R/W	95				
0FH	J0_RSTR_D	J0 Expected String Data	R/W	95				
1C-1BH	WINSZ_SB2	Window Size for Setting ExcB2ErrSt	R/W	96				
1DH	CWIN_SB2	Consecutive Windows for Setting ExcB2ErrSt	R/W	96				
1EH	E#_EXCWIN	Number of Errs/Win for Excessively Errored Window	R/W	96				
16-15H	WINSZ_C2	Window Size for Clearing ExcB2ErrSt	R/W	96				
17H	CWIN_CB2	Consecutive Windows for Clearing ExcB2ErrSt	R/W	97				
18H	E#_NEXCWIN	Number of Errs/Win for Non-Excessively Errored Window	R/W	97				
11-10H	B2_BLKCNT	B2 Block Error Counter	RO	97				
14-12H	B2_BIPCNT	B2 BIP Error Counter	RO	97				
0A-09H	MR_BLKCNT	MST REI Block Error Counter	RO	98				
0D-0BH	MR_BIPCNT	MST REI BIP Error Counter	RO	98				
00H	R_K1	Received K1 byte	RO	98				
01H	R_K2	Received K2 Byte	RO	98				
02H	R_S1	Received S1 byte	RO	98				
03H	R_NU1_8	Received Nu1_8 byte	RO	99				
04H	R_NU1_9	Received Nu1_9 byte	RO	99				
05H	R_NU2_8	Received Nu2_8 byte	RO	99				

Table 28: Register Address Map (Sheet 2 of 4)

Address	Mnemonic	Register Name	Туре	Page #	
06H	R_NU2_9	Received Nu2_9 byte	RO	99	
07H	R_NU9_8	Received Nu9_8 byte	RO	99	
08H	R_NU9_9	Received Nu9_9 byte	RO	99	
Receive Multiplexer Section Protection Registers					
20H	R_MSP_C	Receive MSP Configuration	R/W	100	
21H	R_MSP_OP	Receive MSP Operational	R/W	100	
22H	R_PROTK1	Received K1 byte on Protection Bus from Slave	RO	101	
23H	R_PROTK2	Received K2 byte on Protection Bus from Slave	RO	101	
	Rec	eive Multiplexer Section Adaptation Registers			
90H	R_MSA_C	Receive MSA Configuration	R/W	101	
92–91H	R_AU_NCNT	Receive Negative AU Pointer Justification Event Counter	RO	102	
94–93H	R_AU_PCNT	Receive Positive AU Pointer Justification Event Counter	RO	102	
	Re	eceive HighOrder Path Termination Registers	<u> </u>		
80H	R_HPT_C1	Receive HPT Configuration 1	R/W	103	
81H	R_HPT_C2	Receive HPT Configuration 2	R/W	104	
8AH	J1_RSTR_C	J1 Expected String Control	WO	105	
8BH	J1_RSTR_D	J1 Expected String Data	R/W	105	
82H	EXP_C2	Expected C2 byte	R/W	105	
83H	R_C2	Received C2 byte	RO	105	
84H	R_K3	Received K3 byte	RO	105	
85H	R_HPT_RDI	Received HPT RDI Bits	RO	106	
87–86H	B3_ECNT	B3 Error Event Counter	RO	106	
89–88H	HPTREI_CNT	HPT REI Counter	RO	106	
	Transmit Reg	enerator and Multiplexer Section Termination Regis	ters	•	
30H	T_RMST_OP1	Transmit RMST Operational 1	R/W	107	
1AH	T_RMST_OP2	Transmit RMST Operational 2	R/W	108	
60H	T_SC1_SOH	Transmit Source Configuration 1 for SOH bytes	R/W	109	
61H	T_SC2_SOH	Transmit Source Configuration 2 for SOH bytes	R/W	110	
62H	T_SC3_SOH	Transmit Source Configuration 3 for SOH bytes	R/W	111	
63H	T_SC4_SOH	Transmit Source Configuration 4 for SOH bytes	R/W	112	
3AH	J0_TSTR_C	J0 Transmit String Control	R/W	113	
3ВН	JO_TSTR_D	J0 Transmit String Data	R/W	114	

Table 28: Register Address Map (Sheet 3 of 4)

Address	Mnemonic	Register Name	Type	Page #
31H	MP_TNU1_8	Microprocessor Provided Transmit Nu1_8 Byte	R/W	114
32H	MP_TNU1_9	Microprocessor Provided Transmit Nu1_9 Byte	R/W	114
33H	MP_TNU2_8	Microprocessor Provided Transmit Nu2_8 Byte	R/W	114
34H	MP_TNU2_9	Microprocessor Provided Transmit Nu2_9 Byte	R/W	114
35H	MP_TNU9_8	Microprocessor Provided Transmit Nu9_8 Byte	R/W	115
36H	MP_TNU9_9	Microprocessor Provided Transmit Nu9_9 Byte	R/W	115
37H	MP_TK1	Microprocessor Provided Transmit K1 Byte	R/W	115
38H	MP_TK2	Microprocessor Provided Transmit K2 Byte	R/W	115
39Н	MP_TS1	Microprocessor Provided Transmit S1 Byte	R/W	115
	Tran	smit Multiplexer Section Adaptation Registers		
E3–E2H	T_AU_NCNT	Transmit Negative AU Pointer Justification Event Counter	RO	116
E5-E4H	T_AU_PCNT	Transmit Positive AU Pointer Justification Event Counter	RO	116
	Tra	nsmit High Order Path Termination Registers		
70H	T_SC_HPOH	Transmit Source Configuration for HPOH bytes	R/W	117
71H	T_HPT_C	Transmit HPT Configuration	R/W	118
72H	MP_TC2	Microprocessor Provided Transmit C2 Byte	R/W	119
73H	MP_TK3	Microprocessor Provided Transmit K3 Byte	R/W	119
75H	J1_TSTR_C	J1 Transmit String Control	R/W	120
76H	J1_TSTR_D	J1 Transmit String Data	R/W	120
		Interrupt Source Registers		
A0H	IS_RG	Receive Regenerator Section Interrupt Source	RO	121
A1H	IS_RGMUX	Receive Regenerator and Multiplexer Section Interrupt Source	RO	121
A2H	IS_MUX	Receive Multiplexer Section Interrupt Source	RO	122
АЗН	IS_PROT	Receive Protection Section Interrupt Source	RO	122
A4H	IS_A_HPT	Receive Adaptation and HPT Interrupt Source	RO	123
A5H	IS_HPT	Receive HPT Interrupt Source	RO	123
АбН	IS_RETIME	Receive Retiming Interrupt Source	RO	124
ЕОН	IS_XMT	Transmit Interrupt Source	RO	124
D1H	IS_GLOB	Global Interrupt Source	RO	125

Table 28: Register Address Map (Sheet 4 of 4)

Address	Mnemonic	Register Name	Туре	Page #				
	Interrupt Enable Registers							
ВОН	IE_RG	Receive Regenerator Section Interrupt Enable	R/W	126				
B1H	IE_RGMUX	Receive Regenerator and Multiplexer Section Interrupt Enable	R/W	126				
В2Н	IE_MUX	Receive Multiplexer Section Interrupt Enable	R/W	126				
ВЗН	IE_PROT	Receive Protection Section Interrupt Enable	R/W	126				
B4H	IE_A_HPT	Receive Adaptation and HPT Interrupt Enable	R/W	126				
В5Н	IE_HPT	Receive HPT Interrupt Enable	R/W	126				
В6Н	IE_RETIME	Receive Retiming Interrupt Enable	R/W	126				
E1H	IE_XMT	Transmit Interrupt Enable	R/W	126				
		Status Registers						
СОН	S_RG	Receive Regenerator Section Status	RO	127				
C1H	S_RGMUX	Receive Regenerator and Multiplexer Section Status	RO	127				
СЗН	S_PROT	Receive Protection Section Status	RO	128				
C4H	S_A_HPT	Receive Adaptation and HPT Status	RO	128				
C5H	S_HPT	Receive HPT Status	RO	129				
D0H	S_AIS_PROT	Receive AIS and Protection Switch Status	RO	130				

Global Registers

OCR1—Operational Configuration 1 (50H)

Configures global configuration parameters for chip operation.

Bit	Name	Description	Туре	Default
7	Formless	Select I/O frame data stream interface. Must be set to 0 in STM-1 mode.	R/W	0
		0 = Serial		
		1 = Parallel		
6	LnCodeSel	Line interface coding (serial interface only).	R/W	0
		0 = B3ZS		
		1 = NRZ		
5	StmMode	STMMODE pin input setting.	RO	X
		0 = STM-0		
		1 = STM-1		
4:2	OpCnfg<2:0>	The OHT chip can be configured to have the following operational modes:	R/W	100
		000 = Repeater		
		001 = Add/Drop Multiplexor (ADM) - No Protection		
		010 = 1+1 ADM Protection Main/Master		
		011 = 1+1 ADM Protection Slave		
		100 = Terminal - No Protection		
		101 = 1+1 Terminal Protection Main/Master		
		110 = 1+1 Terminal Protection Slave		
1:0	ScrmblCnfg<1:0>	If input pin SCRAMSEL is 0 these indicate the scrambler length. When SCRAMSEL is 1 the scrambler is disabled.	R/W	10
		00 = Disable scrambler		
		01 = 2e13		
		10 = 2e7		
		11 = 2e11		

OCR2—Operational Configuration 2 (51H)

Bit	Name	Description	Туре	Default
7	MasIntEn	This bit enables/disables the chip interrupt pin 0 = Disable interrupt pin 1 = Activate interrupt pin when there are unmasked active interrupts	R/W	0
6	AlmUpdDsbl	This bit enables/disables updates to status registers when a <i>status</i> alarm in the same register has an active interrupt. This pin is used during interrupt servicing. In the interrupt service routine the software should 1) set this bit, 2) access status bits and 3) clear this bit. This guarantees that interrupts due to status changes will not be missed. 0 = Enable status updates when alarm interrupt is active	R/W	0
5	BytChgUpdDsbl	 1 = Disable status updates when alarm interrupt is active This bit enables/disables received byte register updates when a register's byte change interrupt is active. This bit is generally used for diagnostics. For example, if the received K2 byte were rapidly toggling the values that it is toggling between could be captured by setting this bit. 0 = Enable received byte register updates when byte change interrupt is active 1 = Disable received byte register updates when byte change interrupt is active 	R/W	0
4	CntrTest	This bit should always be set to 0 during normal operation. It allows faster testing of the overflow interrupt functionality during simulation. 0 = Normal operation 1 = Set overflow count: B1 counter 7; B2 bit counter 31; B2 block counter 3; M1 REI bit counter 31; M1 REI block counter 3; B3 bit/ block counters 7; G1 REI bit/block counters 7	R/W	0
3	RcvRetimDsbl	Allows re-timing to be done on the receive side (re-timing is always done on the transmit side). If re-timing is done on the receive side (i.e., RcvRetimDsbl = 0) the MSOH & RSOH bytes will not be passed through. They are regenerated on the transmit side. This is used when system requirements dictate that the receive side telecom bus timing be synchronous with a local clock. 0 = Enable receive side re-timing. 1 = Disable receive side re-timing.	R/W	1

Bit	Name	Description	Туре	Default
2	IgnoreJ0	Ignore J0 bytes. The receive J0 string cannot result in TIM (Trace Identifier Mismatches) or J1 CRC alarms.	R/W	0
		0 = Ignore J0 byte		
		1 = Monitor J0 bytes.		
1	Reserved	Reserved		
0	IOBusEn	This bit allows the enabling/disabling of the all chip I/O busses except the microprocessor interface. This is useful when changing the configuration bits <i>OpCnfg</i> <2:0> in register 50H. If the I/O busses are not disabled during configuration changes, the chip could be damaged.	R/W	0
		0 = Disable I/O busses		
		1 = Enable I/O busses		

CHIP_ID—Chip ID Number (52H)

This register can only be read. It is used to identify the version of the chip.

Bit	Name	Description	Туре	Default
7:0	ChipID<7:0>	Chip Identification: This field contains the Chip Identification value.	RO	01H

BUF_ACNTS—Buffer All Counters (54H)

A write to this location causes all of the counters to be loaded into buffers and then cleared. The contents of an individual counter buffer can then be read at the addresses specified for the counters in this document. Counters can be individually buffered by writing to the specified MSByte of the counter of interest.

Bit	Name	Description	Туре	Default
7:0	BfrAllCntrs<7:0>		WO	XXH

Receive Regenerator Section Termination Registers

R_RSTC1—Receive RST Configuration 1 (40H)

Configures Regenerator Section Termination parameters of the chip

Bit	Name	Description	Туре	Default
7	RstClkLosEn	Enable/Disable automatic switching to blue clock during Loss of Signal condition.	R/W	1
		0 = Disable automatic clock switch because of LOS		
		1 = Enable automatic clock switch because of LOS		
6	RstAisLofEn	Enable/Disable automatic AIS generation from the RST section to the MST section because of a Loss of Frame condition.	R/W	0
		0 = Disable AIS generation during LOF		
		1 = Enable AIS generation during LOF		
5	RstAisLosEn	Enable/Disable automatic AIS generation from the RST section to the MST section because of a Loss of Signal condition.	R/W	0
		0 = Disable AIS generation during LOS		
		1 = Enable AIS generation during LOS		
4	RstAisFrc	Force AIS generation from the RST section to the MST section via software.	R/W	0
		0 = Disable		
		1 = Enable		
3	RstAisTimEn	Enable/Disable automatic AIS generation from the RST section to the MST section because of an active <i>J0MsMtchSt</i> .	R/W	0
		0 = Disable AIS generation during active J0MsMtchSt		
		1 = Enable AIS generation during active <i>JOMsMtchSt</i>		
2:1	LosItg<1:0>	This field configures LOS alarm filtering.	R/W	0
		0X = No filtering		
		10 = Weak LOS filtering. When <i>IOFrmSel</i> selects Serial, the LOS condition must be maintained for a total of 128 clocks; when set to Parallel LOS must be present for 16 clocks.		
		11 = Strong LOS filtering. When <i>IOFrmSel</i> selects Serial the LOS condition must be maintained for a total of 4096 clocks; when set to Parallel LOS must be present for 512 clocks.		

Bit	Name	Description	Туре	Default
0	CnfgFrmAcq	Modifies the frame acquisition algorithm as it relates to the NDF bits. Only relevant in STM-0. STM-1 mode always uses Normal Acquisition.	R/W	0
		0 = Normal Acquisition: During acquisition check 2 consecutive frames for identical NDF and correct frame word. Desynchronization caused by 4 consecutive incorrect frame words.		
		1 = Robust Acquisition: During acquisition check 5 consecutive frames for identical NDF while also checking for 2 consecutive correct frame words. De-synchronization caused by 4 consecutive incorrect frame words <i>OR</i> 8 consecutive frames not having identical NDF bits.		

R_RSTC2—Receive RST Configuration 2 (47H)

Configures Regenerator Section Termination parameters of the chip

Bit	Name	Description	Type	Default
7:1	Reserved			X
0	CnfgB1Cntr	Configure B1 error counter to be updated using bit errors or block errors	R/W	0
		0 = Bit error		
		1 = Block errors		

LOF_LMN—Loss of Frame L, M, & N Configuration (41–42H)

41H=Bits<15:8>, 42H=Bits<7:0> (Byte access only)

This register sets the Loss Of Frame detection parameters. Address 41H is the upper byte and 42H the lower byte.

Bit	Name	Description	Туре	Default
15	Reserved			
14:10	L<4:0>	After an OOF event is observed (indicated by $OofSt = C0H<0> = 1$), this represents the L parameter. L+1 is the number of frames having $OofSt = 1$ status that result in entering the LOF state (indicated by an $LofSt = C0H<1> = 1$).	R/W	00000
9:5	M<4:0>	After an OOF event is observed (indicated by $OofSt = C0H<0> = 1$), this represents the M parameter. M+1 is the number of frames having $OofSt = 0$ that result in re-entering the NORM state <i>before</i> entering the LOF state.	R/W	00000
4:0	N<4:0>	After an LOF event is observed (indicated by an $LofSt = COH < 1 > = 1$), this represents the N parameter. N+1 is the number of frames having $OofSt = 0$ that result in re-entering the NORM state <i>from</i> the LOF state (indicated by an $LofSt = COH < 1 > = 0$).	R/W	00000

OOF_ECNT—Out Of Frame Event Counter (44–43H)

44H=Bits<15:8>, 43H=Bits<7:0> (Byte access only)

This counter increments each time an OOF error event is detected. A write to the MSB of the counter (44H) causes the entire counter to be loaded into a buffer and then cleared. The contents of the buffer can then be read.

Bit	Name	Description	Туре	Default
15:13	Reserved		RO	
12:0	OofCnt<12:0>	This field indicates the OOF error count value.	RO	00H

B1_ERRCNT—B1 Error Counter (46–45H)

46H=Bits<15:8>, 45H=Bits<7:0> (Byte access only)

This counter increments each time a B1 error event is detected. A write to the MSB of the counter (46H) causes the entire counter to be loaded into a buffer and then cleared. The contents of the buffer can then be read.

Bit	Name	Description	Туре	Default
15:0	B1Cnt<15:0>	This field indicates the B1 error count value.	RO	00H

Receive Regenerator and Multiplexer Section Termination Registers

J0_RSTR_C—J0 Expected String Control (0EH)

These registers allow the configuring of the expected J0 string received in the incoming SOH. This is outlined below:

- 1. Set *ExpcJOAcc* bit to 1. This allows the microprocessor to be in control of incrementing the J0 string pointer.
- 2. Reset the string pointer. A 0 to 1 transition in the *RstExpcJOStrgPntr* bit does this. This pointer identifies which byte in the J0 string will be accessed. Resetting it means that the first byte of the string will be accessed. It is automatically incremented when a read or write accesses the string data register.
- 3. Configure (write) the J0 string that is to be transmitted into the J0 expected string data register 0FH.
- 4. Reset the string pointer and read back the configured string value and verify.
- 5. Reset the string pointer and set *ExpcJ0Acc* to 0.

Bit	Name	Description	Туре	Default
7:2	Reserved			
1	ExpcJ0Acc	This bit allows microprocessor read/write operations to be in control of incrementing the string pointer. This functionality is normally used only during initialization, to program/verify the string value configured by the microprocessor.	WO	0
		0 = Normal operation. Internal hardware process that is comparing the configured J1 string with the incoming J1 string increments the string pointer.		
		1 = The microprocessor read/write operations increment the string pointer.		

Bit	Name	Description	Туре	Default
0	RstExpcJ0StrgPntr	A transition from 0 to 1 in this bit resets the J1 expected string pointer.	WO	0

J0_RSTR_D—J0 Expected String Data (0FH)

	Bit	Name	Description	Туре	Default
Ī	7:0	ExpcJ0StrgData<7:0>	Bits <7:0> represents the data value.	R/W	00H

WINSZ_SB2—Window Size for Setting ExcB2ErrSt (1C-1BH)

1CH=Bits<15:8>, 1BH=Bits<7:0> (Byte access only)

Bit	Name	Description	Туре	Default
15:11	Reserved		R/W	
10:0	ExcB2SetWinSz<10:0>	Number of frames per window = 8*(ExcB2OnWinSz<10:0>+1)	R/W	00H

CWIN_SB2—Consecutive Windows for Setting ExcB2ErrSt (1DH)

Bit	Name	Description	Туре	Default
7	Reserved			
6:0	ExcB2SetWinNum<6:0>	Number of consecutive windows that must be excessively errored in order to set the <i>ExcB2ErrSt</i> bit (register C1H). Note: If <i>ExcB2ErrSt</i> is clear and this register is set to zero, <i>ExcB2ErrSt</i> will never be set.	R/W	00 0011

E#_EXCWIN—Number of Errs/Win for Excessively Errored Window (1EH)

This register configures the minimum number of errors that a window must contain to be considered an excessively errored window. Note: Setting this register to zero will cause every window to be considered an excessively errored window.

Bit	Name	Description	Туре	Default
7:0	ExcB2Min<7:0>		R/W	2BH

WINSZ_C2—Window Size for Clearing ExcB2ErrSt (16-15H)

16H=Bits<15:8>, 15H=Bits<7:0> (Byte access only)

Bit	Name	Description	Туре	Default
15:11	Reserved		R/W	
10:0	ExcB2ClrWinSz<10:0>	Number of frames per window = 8*(ExcB2OnWinSz<10:0>+1).	R/W	00Н

CWIN_CB2—Consecutive Windows for Clearing ExcB2ErrSt (17H)

Bit	Name	Label	Туре	Default
7	Reserved			
6:0	ExcB2ClrWinNum<6:0>	Number of consecutive non-excessively errored windows needed for the excessive error condition to be cleared. Note: If the <i>ExcB2ErrSt</i> bit (register C1H) is set and this register is set to zero, bit <i>ExcB2ErrSt</i> will never be cleared.	R/W	07H

E#_NEXCWIN—Number of Errs/Win for Non-Excessively Errored Window (18H)

This register configures the maximum number of errors that a window can contain and be considered a NonExcessively Errored window. Note: Setting this register to zero will cause every window to be considered a non-excessively errored window.

Bit	Name	Description	Туре	Default
7:0	ExcB2Max<7:0>		R/W	08H

B2_BLKCNT—B2 Block Error Counter (11–10H)

11H=Bits<15:8>, 10H=Bits<7:0> (Byte access only)

This counter increments each time a B2 block error event is detected. A write to the MSByte of the counter (register 11H) causes the entire counter to be loaded into a buffer and then cleared. The contents of the buffer can then be read.

Bit	Name	Description	Туре	Default
15:13	Reserved			
12:0	B2BlkCnt<12:0>	B2 Block Error Count Value.	RO	00H

B2_BIPCNT—B2 BIP Error Counter (14–12H)

14H=Bits<23:16>, 13H=Bits<15:8>, 12H=Bits<7:0> (Byte access only)

This counter increments each time a B2 BIP error event is detected. A write to the MSByte of the counter (register 14H) causes the entire counter to be loaded into a buffer and then cleared. The contents of the buffer can then be read.

Bit	Name	Description	Type	Default
23:18	Reserved			
17:0	B2BipCnt<17:0>	B2 BIP Error Count Value.	RO	00H

MR_BLKCNT—MST REI Block Error Counter (0A-09H)

0AH=Bits<15:8>, 09H=Bits<7:0> (Byte reads only)

Every frame for which the value of MST REI bits (M1<7:0>) is non-zero, this counter is incremented. A write to the MSByte of the counter (register 0AH) causes the entire counter to be loaded into a buffer and then cleared. The contents of the buffer can then be read.

Bit	Name	Description	Туре	Default
15:13	Reserved			
12:0	MstReiBlkCnt<12:0>		RO	00H

MR_BIPCNT—MST REI BIP Error Counter (0D–0BH)

0DH=Bits<23:16>, 0CH=Bits<15:8>, 0BH=Bits<7:0> (Byte access only)

Every frame that is the value of MST REI bits (M1<7:0>) is added to this counter. A write to the MSByte of the counter (register 0DH) causes the entire counter to be loaded into a buffer and then cleared. The contents of the buffer can then be read.

Bit	Name	Description	Туре	Default
23:18	Reserved			
12:0	MstReiBipCnt<17:0>		RO	00H

R_K1—Received K1 byte (00H)

Value of the last 3 consecutively received K1 bytes having the same setting.

Bit	Name	Description	Туре	Default
7:0	RcvK1<7:0>		RO	00H

R_K2—Received K2 Byte (01H)

Value of the last 3 consecutively received K2 bytes having the same setting.

Bit	Name	Description	Туре	Default
7:0	RcvK2<7:0>		RO	00H

R_S1—Received S1 byte (02H)

Value of the last 3 consecutively received S1 bytes having the same setting.

Bit	Name	Description	Туре	Default
7:0	RcvS1<7:0>		RO	00H

R_NU1_8—Received Nu1_8 byte (03H)

National Use byte (see Figure 10) located in row 1 column 8 in the RSOH (STM-1 only).

Bit	Name	Description	Туре	Default
7:0	Nu1_8<7:0>		RO	XXH

R_NU1_9—Received Nu1_9 byte (04H)

National Use byte (see Figure 10) located in row 1 column 9 in the RSOH (STM-1 only).

Bit	Name	Description	Туре	Default
7:0	Nu1_9<7:0>		RO	XXH

R_NU2_8—Received Nu2_8 byte (05H)

National Use byte (see Figure 10) located in row 2 column 8 in the RSOH (STM-1 only).

Bit	Name	Description	Туре	Default
7:0	Nu2_8<7:0>		RO	XXH

R_NU2__9—Received Nu2_9 byte (06H)

National Use byte (see Figure 10) located in row 2 column 9 in the RSOH (STM-1 only).

Bit	Name	Description	Туре	Default
7:0	Nu2_9<7:0>		RO	XXH

R_NU9_8—Received Nu9_8 byte (07H)

National Use byte (see Figure 10) located in row 9 column 8 in the MSOH (STM-1 only).

Bit	Name	Description	Туре	Default
7:0	Nu9_8<7:0>		RO	XXH

R_NU9_9—Received Nu9_9 byte (08H)

National Use byte (see Figure 10) located in row 9 column 9 in the MSOH (STM-1 only).

Bit	Name	Description	Туре	Default
7:0	Nu9_9<7:0>		RO	XXH

Receive Multiplexer Section Protection Registers

R_MSP_C—Receive MSP Configuration (20H)

Bit	Name	Description	Туре	Default
7:3	Reserved			
2	AisOnExcB2En	Enable the insertion of AIS from MST section towards MSA section and generation of SF when ExcB2ErrSt bit (C1H<3>) is set.	R/W	1
		0 = Active <i>ExcB2ErrSt</i> will not cause AIS to be transmitted.		
		1 = Active <i>ExcB2ErrSt</i> will cause AIS to be transmitted.		
1	MstAisEn	Enable/Disable automatic AIS generation from the MST section to the MSA section (see <i>GenMstAisSt</i> bit (D0H register bit 6>) for AIS generation logic).	R/W	1
		0 = Disable		
		1 = Enable		
0	MstAisFrc	Force AIS generation from the MST section to the MSA section via software.	R/W	0
		0 = Disable		
		1 = Enable		

R_MSP_OP—Receive MSP Operational (21H)

Bit	Name	Description	Type	Default
7:2	Reserved			
1	SigDegrade	For both MASTER and SLAVE configurations this value is reflected at the SD output pin. When configured as a SLAVE the value is also reflected at the DMSPPSD output pin. It is updated by the microprocessor. 0 = No defect 1 = Defect	R/W	0
0	ProtSw	Protection switch setting. When configured as a MASTER the value of this bit is reflected in <i>ProtSwSt</i> (see D0H<0>). When configured as a SLAVE this bit has no action. 0 = Protect 1 = No Protect	R/W	1

R_PROTK1—Received K1 byte on Protection Bus from Slave (22H)

.

Bit		Description	Туре	Default
7:0	ProtK1<7:0>	Bits <7:0> represents the K1 byte received on the protection bus.	RO	00H

R_PROTK2—Received K2 byte on Protection Bus from Slave (23H)

.

Bit		Description	Туре	Default
7:0	ProtK2<7:0>	Bits <7:0> represents the K2 byte received on the protection bus.	RO	00H

Receive Multiplexer Section Adaptation Registers

R_MSA_C—Receive MSA Configuration (90H)

Bit		Description	Туре	Default
7:3	Reserved			
2	RcvMsaAisEn	Enable/Disable automatic AIS generation from the MSA section to the HPT section. (see <i>GenMsaAisSt</i> bit (D0H bit 5>) for AIS generation logic).	R/W	0
		0 = Disable		
		1 =Enable		
1	RcvMsaAisFrc	Force AIS generation from the MSA section to the HPT section via software.	R/W	0
		0 = Normal operation		
		1 = Force		
0	AuPntrSSEn	Enable consideration of AU pointer SS bits during pointer processing. If enabled the SS bits must be set to "10" (binary) or a LOP (C4H<7>) alarm will be generated.	R/W	0
		0 = Disable		
		1 = Enable		

R_AU_NCNT—Receive Negative AU Pointer Justification Event Counter (92–91H)

This counter increments each time a negative pointer justification on the receive side is detected in the H1: H2 bytes of the administrative unit payload. A write to the MSByte of the counter (register 92H) causes the entire counter to be loaded into a buffer and then cleared. The contents of the buffer can then be read.

Note

If receive re-timing is enabled (RcvRetimDsbl = 51 < 3 > = 0) and a pointer decrement is generated by the re-timing function, this counter will not be incremented.

•

Bit	Name	Description	Туре	Default
15:11	Reserved			
10:0	RcvAUNegCnt<10:0>	Bits <10:0> represent the count value.	RO	00H

R_AU_PCNT—Receive Positive AU Pointer Justification Event Counter (94–93H)

This counter increments each time a negative pointer justification on the receive side is detected in the H1:H2 bytes of the administrative unit payload. A write to the MSByte of the counter (register 94H) causes the entire counter to be loaded into a buffer and then cleared. The contents of the buffer can then be read.

Note

If re-timing is enabled (RcvRetimDsbl = 51H < 3 > = 0) and a pointer increment is generated by the re-timing function, this counter will not be incremented.

Bit	Name	Description	Type	Default
15:11	Reserved			
10:0	RcvAUPosCnt<10:0>	Bits <10:0> represent the count value.	RO	00H

Receive HighOrder Path Termination Registers

R_HPT_C1—Receive HPT Configuration 1 Register (80H)

Bit	Name	Description	Туре	Default
7	HptRdiDetCnt	This bit configures the number of received G1 bytes that must have the same value in the RDI bits for the <i>HptRdiSt</i> bit (C5H bit 3>) to be updated. The received G1 RDI bits can be retrieved via register 85H. $0 = 3$	R/W	0
		1=5		
6	C2MsMtchCnt	Configures the number of mismatches, between the <i>RcvC</i> 2 byte (83H) and the <i>ExpcC</i> 2 byte (82H), needed for the <i>HptSlmSt</i> bit (C5H bit 4>) to be updated.	R/W	0
		0 = 3 mismatches		
		1 = 5 mismatches		
5	RcvJ1StrgLen	Set the J1 string length	R/W	0
		0 = 16 bytes		
		1 = 64 bytes		
4	RcvHptAisFrc	Force AIS generation from the HPT section to the HPA section via software	R/W	0
		0 = Normal Operation		
		1 = Force		
3	RcvHptAisEnbl	Enable/Disable automatic AIS generation from the HPT section to the HPA section. (See <i>GenHptAisSt</i> bit (D0H bit 4>) for AIS generation logic).	R/W	0
		0 = Disable		
		1 = Enable		
2	B3CntrCnfg	Configure B3 error counter to be updated using bit errors or block errors.	R/W	0
		0 = Bit error		
		1 = Block errors		
1	HptReiCntrCnfg	Configure HPT REI error counter (88H and 89H) to be updated using bit errors or block errors.	R/W	0
		0 = Bit error		
		1 = Block errors		
0	Reserved			

R_HPT_C2—Receive HPT Configuration 2 Register (81H)

Bit	Name	Description	Туре	Default
7	Reserved			
6	HptRdiOnSlmEn	Enable the insertion of HPT RDI on active <i>HptSlmSt</i> (C5H bit 4>) alarm.	R/W	0
		0 = Active <i>HptSlmSt</i> alarm will <i>not</i> cause insertion of RDI bits in the transmitted G1 byte.		
		1 = Active <i>HptSlmSt</i> alarm will cause insertion of RDI bits in the transmitted G1 byte.		
5	RcvTbJ0J1Cnfg	Configures DTBJ0J1EN output.	R/W	0
		0 = Single pulse on J1 every frame.		
		1 = Double pulse on J1 every 4 frames, indicating multiframe beginning (H4<1:0> = "00"). Other 3 frames only a single pulse.		
4	HptRdiOnUnEqpEn	Enable the insertion of HPT RDI on active <i>HptUnEqpSt</i> (C5H bit 5>) alarm.	R/W	0
		0 = Active <i>HptUnEqpSt</i> alarm will not cause update of transmitted G1 RDI bits		
		1 = Active <i>HptUnEqpSt</i> alarm will cause update of transmitted G1 RDI bits.		
3	B3UnEqpCnfg	Configures behavior of <i>HptUnEqpSt</i> alarm (C5H bit 5>) generation based on the B3 byte.	R/W	0
		0 = Ignore B3 when generating HptUnEqpSt alarm		
		1= No error detected in received B3 for 5 consecutive frames is necessary for <i>HptUnEqpSt</i> alarm generation.		
2	N1UnEqpCnfg	Configures behavior of <i>HptUnEqpSt</i> alarm (C5H bit 5>) alarm generation based on the N1 byte.	R/W	0
		0 = Ignore N1 when generating HptUnEqpSt alarm.		
		1 = Received N1 with value zero for 5 consecutive frames is necessary for <i>HptUnEqpSt</i> alarm generation.		
1:0	J1UnEqpCnfg<1:0>	These bits configure the behavior of <i>HptUnEqpSt</i> (C5H oit 5>) alarm generation based on the J1 byte.	R/W	00
		00 = Ignore J1 when generating $HptUnEqpSt$ alarm.		
		10 = Receive J1 with value zero for 5 consecutive frames is necessary for <i>HptUnEqpSt</i> alarm generation.		

J1_RSTR_C—J1 Expected String Control Register (8AH)

These registers allow the configuring of the expected J1string (trace identifier) received in incoming HPOH. See the $J0_RSTR_C$ (0EH) Register description for the configuration procedure.

Bit	Name	Description	Туре	Default
7:2	Reserved			
1	ExpcJ1Acc	This bit allows microprocessor read/write operations to be in control of incrementing the string pointer. This functionality is normally used only during initialization, to verify the string value configured by the microprocessor. 0 = Normal operation. Internal hardware process that compares the configured J1 string with the incoming J1 string and increments the string pointer.	WO	1
		1 = The microprocessor read/write operations increment the string pointer.		
0	RstExpcJ1StrgPntr	A transition from 0 to 1 in this bit resets the J1 expected string pointer.	WO	0

J1_RSTR_D—J1 Expected String Data Register (8BH)

.

	Bit	Name	Description	Туре	Default
ľ	7:0	ExpcJ1StrgData<7:0>	Bits <7:0> correspond to Data<7:0>, respectively.	R/W	00H

EXP_C2—Expected C2 byte Register (82H)

The contents of this register are the expected value of the received signal label (C2) byte.

Bit	Name	Description	Туре	Default
7:0	ExpcC2<7:0>	Bits <7:0> correspond to ExpcC2<7:0>, respectively.	R/W	00H

R_C2—Received C2 byte Register (83H)

The contents of this register are the received signal label (C2) byte.

Bit	Name	Description	Туре	Default
7:0	RcvC2<7:0>	Bits <7:0> correspond to RcvC2<7:0>, respectively.	RO	XXH

R_K3—Received K3 byte Register (84H)

Setting of the last 3 consecutively received K3 bytes having the same value.

Bit	Name	Description	Туре	Default
7:0	RcvK2<7:0>	Bits <7:0> correspond to RcvK2<7:0>, respectively.	RO	XXH

R_HPT_RDI—Received HPT RDI Bits Register (85H)

The contents of this register are the received RDI (G1<3:1>) and spare bits (G1<bit 0>) from the received G1 byte.

Bit	Name	Description	Туре	Default
7:4	Reserved			
3:1	HptRcvRdi<2:0>	Bits <3:1> correspond to G1<3:1>, respectively.	RO	X
0	HptRcvSpBit	G1 <bit 0=""></bit>	RO	X

B3_ECNT—B3 Error Event Counter (87–86H)

87H=Bits<15:8>, 86H=Bits<7:0> (Byte access only)

This counter is configured via *B3CntrCnfg* (registers 0x80) to count B3 error events. A write to the MSByte of the counter (register 87H) causes the entire counter to be loaded into a buffer and then cleared. The contents of the buffer can then be read.

Bit	Name	Description	Туре	Default
15:0	B3Cnt<15:0>	Bits <15:0> correspond to B3CNT<15:0>, respectively.	RO	0000H

HPTREI_CNT—HPT REI Counter (89-88H)

89H=Bits<15:8>, 88H=Bits<7:0> (Byte access only)

If counting HPT REI bit errors (HptReiCntrCnfg = 80H
bit 1> = 0), each frame's HPT REI bits (G1<7:4>) are added to this counter. If counting HPT REI block errors (HptReiCntrCnfg = 80H
bit 1> = 1), for each frame in which the value of the REI bits is non-zero, this counter is incremented. A write to the MSByte of the counter (register 89H) causes the entire counter to be loaded into a buffer and then cleared. The contents of the buffer can then be read.

Bit	Name	Description	Туре	Default
15:0	HptReiCnt<15:0>	Bits <15:0> correspond to HptReiCnt<15:0>, respectively.	RO	0000H

Transmit Regenerator and Multiplexer Section Termination Registers

T_RMST_OP1—Transmit RMST Operational 1 Register (30H)

Bit	Name	Description	Туре	Default
7	XmtMsaAisFrc	Force AIS at the pointer processing block level (MSA) towards the SDH network	R/W	0
		0 = No force		
		1 = Force AIS		
6	MstReiSrc	When $XmtM1Src = 60H<0> = 0$ the source of the M1 REI bits is defined by this bit.	R/W	0
		0 = Hardware supplied REI (Feedback of received B2 errors)		
		1 = REI bits set to zero		
5	Nu1DefEn	Value for NU1_8 & NU1_9 when transmit source is <i>not</i> serial bus (see <i>XmtNu1_9Src</i> & <i>XmtNu1_8Src</i> in register 62H)	R/W	0
		0 = Default value (AAH)		
		1 = Microprocessor supplied value		
4	MstRdiSrc	When $XmtK2Src = 61H$ bit 1> = 0 the source of the MST RDI bits (K2<2:0>) are defined by this bit.	R/W	0
		0 = Hardware supplied MST RDI bits (other K2 bits set to register 38H value)		
		1 = Microprocessor supplied RDI (all K2 bits set to register 38H value)		
3:2	InvB2<1:0>	Invert B2 byte (used for testing).	R/W	00
		0X = No inversion		
		10 = Invert forever		
		11 = Invert for a frame		
1:0	InvB1<1:0>	Invert B1 byte (used for testing).	R/W	00
		0X = No inversion		
		10 = Invert forever		
		11 = Invert for a frame		

T_RMST_OP2—Transmit RMST Operational 2 Register (1AH)

To activate the configuration bits specified in this register the K2 byte must come from hardware (XmtK2Src = 61H < bit 1>= 0) and K2 RDI bits must be hardware supplied (MstRdiSrc = 30H < bit 4>= 0).

Bit	Name	Description	Туре	Default
7:3	Reserved			
2	MstRdiOnExcB2En	Enable the insertion of MST RDI (K2<2:0> = "110") during active <i>ExcB2ErrSt</i> (C1H bit 3>).	R/W	0
		0 = Active ExcB2ErrSt will <i>not</i> cause insertion		
		1 = Active ExcB2ErrSt will cause insertion		
1	MstRdiFrc	Force insertion of MST RDI (K2<2:0> = "110").	R/W	0
		0 = Disable force		
		1 = Enable force		
0	Reserved			

T_SC1_SOH—Transmit Source Configuration 1 for SOH bytes Register (60H)

Bit	Name	Description	Type	Default
7:6	XmtJ0Src	These bits specify the source of the transmitted J0 byte. XmtJ0Src<1> should be set to 0 in terminal and ADM configurations.	R/W	0
		00 = Microprocessor		
		01 = TSOH input		
		1X = Source is received byte		
5	XmtE1Src	This bit specifies the source of the transmitted E1 byte. Should be set to 0 in terminal configuration.	R/W	0
		0 = TROW input		
		1 = Source is received byte		
4	XmtF1Src	This bit specifies the source of the transmitted F1 byte. Should be set to 0 in terminal configuration.	R/W	0
		0 = TDOW input		
		1 = Source is received byte		
3	XmtD1D3Src	This bit specifies the source of the transmitted D1-D3 bytes. Should be set to 0 in terminal configuration.	R/W	0
		0 = TRD input		
		1 = Source is received byte		
2	XmtD4D12Src	This bit specifies the source of the transmitted D4-D12 bytes. Should be set to 0 in terminal configuration. Should be set to 1 in regenerator configuration.	R/W	0
		0 = TMD input		
		1 = Source is received byte		
1	XmtE2Src	This bit specifies the source of the transmitted E2 byte. Should be set to 0 in terminal configuration. Should be set to 1 in regenerator configuration.	R/W	0
		0 = TMOW input		
		1 = Source is received byte		
0	XmtM1Src	This bit specifies the source of the transmitted M1 byte. It is ignored in regenerator configuration - the received M1 byte is passed through.	R/W	0
		0 = Internal hardware process (see <i>MstReiSrc</i> , 30H <bit 6="">)</bit>		
		1 = TSOH input		

T_SC2_SOH—Transmit Source Configuration 2 for SOH bytes Register (61H)

Bit	Name	Description	Type	Default
7	XmtNu9_9Src	This bit is only valid in STM-1 mode . It specifies the transmit source for the National Use byte in row 9 column 9 of the SOH. It is ignored in regenerator configuration - the received byte is passed through .	R/W	0
		0 = Microprocessor		
		1 = TSOH input		
6	XmtNu9_8Src	This bit is only valid in STM-1 mode . It specifies the transmit source for the National Use byte in row 9 column 8 of the SOH. It is ignored in regenerator configuration - the received byte is passed through .	R/W	0
		0 = Microprocessor		
		1 = TSOH input		
5	XmtUn3_9Src	This bit is only valid in STM-1 mode . It specifies the transmit source for the "Unused" byte in row 3 column 9 of the SOH. Should be set to 0 in terminal <i>and</i> ADM configurations.	R/W	0
		0 = TSOH input		
		1 = Source is received byte		
4	XmtUn3_8Src	This bit is only valid in STM-1 mode . It specifies the transmit source for the "Unused" byte in row 3 column 8 of the SOH. Should be set to 0 in terminal <i>and</i> ADM configurations.	R/W	0
		0 = TSOH input		
		1 = Source is received byte		
3	XmtUn3_6Src	This bit is only valid in STM-1 mode . It specifies the transmit source for the "Unused" byte in row 3 column 6 of the SOH. Should be set to 0 in terminal <i>and</i> ADM configurations.	R/W	0
		0 = TSOH input		
		1 = Source is received byte		
2	XmtS1Src	This bit specifies the source of the transmitted S1 byte. It is ignored in regenerator configuration - the received S1 byte is passed through.	R/W	0
		0 = Microprocessor		
		1 = TSOH input		

Bit	Name	Description	Type	Default
1	XmtK2Src	This bit specifies the source of the transmitted K2 byte. It is ignored in regenerator configuration - the received K2 byte is passed through.	R/W	0
		0 = Internal hardware process (see <i>MstRdiSrc</i> , 30H<4>) 1 = TSOH input		
0	XmtK1Src	This bit specifies the source of the transmitted K1 byte. It is ignored in regenerator configuration - the received K1 byte is passed through.	R/W	0
		0 = Microprocessor 1 = TSOH input		

T_SC3_SOH—Transmit Source Configuration 3 for SOH Bytes Register (62H)

Bit	Name	Description	Туре	Default
7:6	XmtNu2_9Src<1:0>	These bits are only valid in STM-1 mode . They specify transmit source for the National Use byte in row 2 column 9 of the SOH. XmtNu2_9Src<1> should be set to Ø in terminal <i>and</i> ADM configurations.	R/W	00
		00 = Microprocessor provided value		
		01 = TSOH input		
		1X = Received byte		
5:4	XmtNu2_8Src<1:0>	These bits are only valid in STM-1 mode . They specify the transmit source for the National Use byte in row 2 column 8 of the SOH. XmtNu2_8Src<1> should be set to Ø in terminal <i>and</i> ADM configurations.	R/W	00
		00 = Microprocessor provided value		
		01 = TSOH input		
		1X = Received byte		
3:2	XmtNu1_9Src<1:0>	These bits are only valid in STM-1 mode . They specify the transmit source for the National Use byte in row 1 column 9 of the SOH. XmtNu1_9Src<1> should be set to Ø in terminal <i>and</i> ADM configurations.	R/W	00
		00 = Nu1DefEn (30H<5>)		
		01 = TSOH input		
		1X = Received byte		

Bit	Name	Description	Туре	Default
1:0	XmtNu1_8Src<1:0>	These bits are only valid in STM-1 mode . They specify the transmit source for the National Use byte in row 1 column 8 of the SOH. XmtNu1_8Src<1> should be set to Ø in terminal <i>and</i> ADM configurations.	R/W	00
		00 = Nu1DefEn (30H<5>)		
		01 = TSOH input		
		1X = Received byte		

T_SC4_SOH—Transmit Source Configuration 4 for SOH Bytes Register (63H)

Bit	Name	Description	Type	Default
7	Reserved			
6	XmtMd3_5Src	This bit is only valid in STM-1 mode . It specifies the transmit source for the Media-Dependent byte in row 3 column 5 of the SOH. Should be set to 0 in terminal <i>and</i> ADM configurations.	R/W	0
		0 = TSOH input		
		1 = Source is received byte		
5	XmtMd3_3Src	This bit is only valid in STM-1 mode . It specifies the transmit source for the Media-Dependent byte in row 3 column 3 of the SOH. Should be set to 0 in terminal <i>and</i> ADM configurations.	R/W	0
		0 = TSOH input		
		1 = Source is received byte		
4	XmtMd3_2Src	This bit is only valid in STM-1 mode . It specifies the transmit source for the Media-Dependent byte in row 3 column 2 of the SOH. Should be set to 0 in terminal <i>and</i> ADM configurations.	R/W	0
		0 = TSOH input		
	***	1 = Source is received byte	D 411	0
3	XmtUn2_6Src	This bit is only valid in STM-1 mode . It specifies the transmit source for the "Unused" byte in row 2 column 6 of the SOH. Should be set to 0 in terminal <i>and</i> ADM configurations.	R/W	0
		0 = TSOH input		
		1 = Source is received byte		

Bit	Name	Description	Туре	Default
2	XmtMd2_5Src	This bit is only valid in STM-1 mode . It specifies the transmit source for the Media-Dependent byte in row 2 column 5 of the SOH. Should be set to 0 in terminal <i>and</i> ADM configurations.	R/W	0
		0 = TSOH input		
		1 = Source is received byte.		
1	XmtMd2_3Src	This bit is only valid in STM-1 mode . It specifies the transmit source for the Media-Dependent byte in row 2 column 3 of the SOH. Should be set to 0 in terminal <i>and</i> ADM configurations.	R/W	0
		0 = TSOH input		
		1 = Source is received byte		
0	XmtMd2_2Src	This bit is only valid in STM-1 mode . It specifies the transmit source for the Media-Dependent byte in row 2 column 2 of the SOH. Should be set to 0 in terminal <i>and</i> ADM configurations.	R/W	0
		0 = TSOH input		
		1 = Source is received byte		

J0_TSTR_C—J0 Transmit String Control Register (3AH)

These registers allow the configuration of the J0 string to be transmitted in the outgoing SOH. See the $J0_RSTR_C$ (0EH) Register description for the configuration procedure.

Bit	Name	Description	Туре	Default
7:2	Reserved			
1	XmtJ0Acc	This bit allows microprocessor read/write operations to be in control of incrementing the string pointer. This functionality is normally used only during initialization, to verify the string value configured by the microprocessor. 0 = Normal operation. Internal hardware process that inserts this string into the outgoing STM frame increments the string pointer. 1 = The microprocessor read/write operations increment the string pointer. During this operation a value of 01H	R/W	0
		is transmitted in the outgoing J0 byte.		
0	RstXmtJ0StrgPntr	A transition from 0 to 1 in this bit resets the J0 transmit string pointer.	R/W	0

JO_TSTR_D—J0 Transmit String Data Register (3BH)

Bit	Name	Description	Туре	Default
7:0	XmtJ0StrgData<7:0>	Bits <7:0> correspond to Data bits <7:0>, respectively.	R/W	00H

MP_TNU1_8—Microprocessor Provided Transmit Nu1_8 Byte (31H)

When $XmtNu1_8Src<1:0> = 62H<1:0> = 00$ and Nu1DefEn = 30H<5> = 0 this value will be transmitted in National Use byte located in row 1 column 8 of an STM-1 frame.

Bit	Name	Description	Туре	Default
7:0	XmtNu1_8<7:0>	Bits <7:0> correspond to XmtNu1_8<7:0>, respectively.	R/W	00H

MP_TNU1_9—Microprocessor Provided Transmit Nu1_9 Byte Register (32H)

When $XmtNu1_9Src<1:0> = 62H<3:2> = 00$ and Nu1DefEn = 30H<5> = 0 this value will be transmitted in National Use byte located in row 1 column 9 of an **STM-1** frame.

Bit	Name	Description	Туре	Default
7:0	XmtNu1_9<7:0>	Bits <7:0> correspond to XmtNu1_9<7:0>, respectively.	R/W	00H

MP_TNU2_8—Microprocessor Provided Transmit Nu2_8 Byte (33H)

When $XmtNu2_8Src<1:0> = 62H<5:4> = 00$ this value will be transmitted in National Use byte located in row 2 column 8 of an **STM-1** frame.

Bit	Name	Description	Туре	Default
7:0	XmtNu2_8<7:0>	Bits <7:0> correspond to XmtNu2_8<7:0>, respectively.	R/W	00H

MP_TNU2_9—Microprocessor Provided Transmit Nu2_9 Byte Register (34H)

When $XmtNu2_9Src<1:0> = 62H<7:6> = 00$ this value will be transmitted in National Use byte located in row 2 column 9 of an **STM-1** frame.

Bit	Name	Description	Туре	Default
7:0	XmtNu2_9<7:0>	Bits <7:0> correspond to XmtNu2_9<7:0>, respectively.	R/W	00H

MP_TNU9_8—Microprocessor Provided Transmit Nu9_8 Byte (35H)

When $XmtNu9_8Src = 61$ H
bit 6> = 0 this value will be transmitted in National Use byte located in row 9 column 8 of an **STM-1** frame.

Bit	Name	Description	Туре	Default
7:0	XmtNu9_8<7:0>	Bits <7:0> correspond to XmtNu9_8<7:0>, respectively.	R/W	00H

MP_TNU9_9—Microprocessor Provided Transmit Nu9_9 Byte (36H)

When $XmtNu9_9Src = 61$ H
bit 7> = 0 this value will be transmitted in National Use byte located in row 9 column 9 of an **STM-1** frame.

Bit	Name	Description	Туре	Default
7:0	XmtNu9_9<7:0>	Bits <7:0> correspond to XmtNu9_9<7:0>, respectively.	R/W	00H

MP_TK1—Microprocessor Provided Transmit K1 Byte Register (37H)

When XmtK1Src = 61H
bit 0> = 0 this byte is transmitted in the K1 byte.

Bit	Name	Description	Туре	Default
7:0	XmtK1<7:0>	Bits <7:0> correspond to XmtK1<7:0>, respectively.	R/W	00H

MP_TK2—Microprocessor Provided Transmit K2 Byte Register (38H)

When XmtK2Src = 61H
bit 1> = 0 and K2RdiSrc = 30H
bit 4> = 1 this byte is transmitted in the K2 byte.

Bit	Name	Description	Туре	Default
7:0	XmtK2<7:0>	Bits <7:0> correspond to XmtK2<7:0>, respectively.	R/W	00H

MP_TS1—Microprocessor Provided Transmit S1 Byte Register (39H)

When XmtS1Src = 61H
bit 2> = 0 this byte is transmitted in the S1 byte.

Bit	Name	Description	Туре	Default
7:0	XmtS1<7:0>	Bits <7:0> correspond to XmtS1<7:0>, respectively.	R/W	00H

Transmit Multiplexer Section Adaptation Registers

The AU pointer justification event counters discussed below are only updated in ADM mode.

T_AU_NCNT—Transmit Negative AU Pointer Justification Event Counter (E3–E2H)

This counter increments each time a negative pointer justification is generated by the transmit re-timing function (this retiming function cannot be disabled). A write to the MSByte of the counter (register 92H) causes the entire counter to be loaded into a buffer and then cleared. The contents of the buffer can then be read.

Bit	Name	Description	Туре	Default
15:11	Reserved			
10:0	XmtAUNegCnt<10:0>	Bits <10:0> correspond to counter bits <10:0>, respectively.	RO	00Н

T_AU_PCNT—Transmit Positive AU Pointer Justification Event Counter (E5–E4H)

This counter increments each time a positive pointer justification is generated by the transmit retiming function (this retiming function cannot be disabled). A write to the MSByte of the counter (register 94H) causes the entire counter to be loaded into a buffer and then cleared. The contents of the buffer can then be read.

Bit	Name	Description	Туре	Default
15:11	Reserved			
10:0	XmtAUPosCnt<10:0>	Bits <10:0> correspond to counter bits <10:0>, respectively.	RO	00Н

Transmit HighOrder Path Termination Registers

T_SC_HPOH—Transmit Source Configuration for HPOH bytes (70H)

Note that the H4 POH byte is generated internally. The source of N1 POH byte is serially sourced if XmtPOHSrc = 0 and passed through if XmtPOHSrc = 1.

Bit	Name	Description	Туре	Default
7	XmtUnEqpJ1Cnfg	Enable insertion of all zeros in the J1 bytes during active HptUnEqpSt (C5H<5>) alarm.	R/W	1
		0 = During active <i>HptUnEqpSt</i> send J1 value defined by <i>XmtJ1Src</i> bit		
		1 = During active HptUnEqpSt send all zeros in the J1 byte		
6	XmtK3Src	This bit specifies the source of the transmitted K3 byte. It is ignored in regenerator configuration - the received K3 byte is passed through .	R/W	0
		0 = Microprocessor (73H)		
		1 = TPOH input		
5	XmtG1Src	This bit specifies the source of the transmitted G1 byte. When set to 0, updates to the RDI and REI bits are defined by <i>G1ReiSrc</i> and <i>G1RdiSrc</i> (see register 71H). It is ignored in regenerator configuration - the received G1 byte is passed through .	R/W	0
		0 = Internal hardware		
		1 = TPOH input		
4	XmtC2Src	This bit specifies the source of the transmitted C2 byte. It is ignored in regenerator configuration - the received C2 byte is passed through.	R/W	0
		0 = Microprocessor (72H)		
		1 = TPOH input		
3	XmtJ1Src	This bit specifies the source of the transmitted J1 byte. It is ignored in regenerator configuration - the received J1 byte is passed through.	R/W	0
		0 = Microprocessor		
		1 = TPOH input		
2	XmtPOHSrc	This bit forces all POH bytes to be passed through. Must be set to 0 in terminal configuration.	R/W	0
		0 = Source of all POH bytes independently specified by other bits in this register		
		1 = All POH bytes passed through		

Bit	Name	Description	Туре	Default
1	XmtF3Src	This bit specifies the source of the transmitted F3 byte. Must be set to 0 in terminal configuration. It is ignored in regenerator configuration - the received F3 byte is passed through.	R/W	0
		0 = TPOW2 input 1 = Source is received byte		
0	XmtF2Src	This bit specifies the source of the transmitted F2 byte. Must be set to 0 in terminal configuration. It is ignored in regenerator configuration - the received F2 byte is passed through. 0 = TPOW1 input	R/W	0
		1 = Source is received byte		

T_HPT_C—Transmit HPT Configuration (71H)

Bit	Name	Description	Type	Default
7	XmtTbJ0J1Cnfg	Configures MTBJ0J1EN output.	R/W	1
		0 = Single pulse on J1 every frame		
		1 = Double pulse on J1 every 4 frames, indicating multi- frame beginning (H4<1:0> = "00"). Other 3 frames only a single pulse		
6	XmtUnEqp	Transmit unequipped VC-3 (STM-0) or VC-4 (STM-1) signal.	R/W	0
		0 = Normal		
		1 = Unequipped - C2, N1 = 00H, Valid B3, J1 see XmtUnEqpJ1Cnfg bit (70H<7>)		
5	XmtJ1StrgLen	Set the transmitted J1 string length	R/W	0
		0 = 16 bytes		
		1 = 64 bytes		
4	XmtHptAisFrc	Force AIS at the HPT level towards the SDH network when $XmtPOHSrc = 70H < 2 > = 1$.	R/W	0
		0 = Normal operation		
		1 = Force AIS		
3	HptReiSrc	When the $XmtG1Src = 70H < 5 > = 0$, the source of the G1 REI bits (G1<7:4>) is defined by this bit setting.	R/W	0
		0 = Hardware supplied REI – (feedback B3 errors)		
		1 = REI bits to zero		

Bit	Name	Description	Туре	Default
2	HptRdiSrc	When the $XmtG1Src = 70H < 5 > = 0$, the source of the G1 RDI bits (G1<3:1>) are defined by this bit setting.	R/W	0
		0 = Hardware supplied RDI = >		
		If (AuAisSt OR LopSt)		
		G1<3:1> = 101		
		elsif (<i>RdiOnSlmEn</i> AND <i>HptSlmSt</i>)		
		G1<3:1> = 100		
		elsif ((RdiOnUnEqpEn AND HptUnEqpSt) OR		
		J1MsMtchSt)		
		G1<3:1> = 110		
		else		
		G1 < 3:1 > = 000		
		1 = Microprocessor supplied RDI (74H)		
1:0	InvB3<1:0>	Invert B3 byte (used for testing).	R/W	00
		0X = No inversion		
		10 = Invert forever		
		11 = Invert for a frame		

MP_TC2—Microprocessor Provided Transmit C2 Byte (72H)

When XmtC2Src = 70H<4> = 0 and XmtPOHSrc = 70H<2> = 0 this byte is transmitted in the C2 timeslot.

Bit	Name	Description	Туре	Default
7:0	XmtC2<7:0>	Bits <7:0> correspond to XmtC2<7:0>, respectively.	R/W	01H

MP_TK3—Microprocessor Provided Transmit K3 Byte (73H)

When XmtK3Src = 70H<6> = 0 and XmtPOHSrc = 70H<2> = 0 this byte is transmitted in the K3 timeslot.

Bit	Name	Description	Туре	Default
7:0	XmtK3<7:0>	Bits <7:0> correspond to XmtK3<7:0>, respectively.	R/W	00H

MP_THPTRDI—Microprocessor Provided Transmit HPT RDI bits (74H)

Bit	Name	Description	Туре	Default
7:4	Reserved			
3:1	XmtHptRdi<2:0>	Microprocessor provided HPT RDI value. This value is transmitted in G1<3:0> when $XmtG1Src = 70H<5> = 0$ and $HptRdiSrc = 71H<2> = 1$.	R/W	0
0	XmtG1SpBit	Microprocessor provided HPT RDI value. This value is transmitted in G1<3:0> when $XmtG1Src = 70H<5> = 0$ and $HptRdiSrc = 71H<2> = 1$.	R/W	0

J1_TSTR_C—J1 Transmit String Control (75H)

These registers allow the configuration of the J1 string to be transmitted in outgoing HPOH. See the $J0_RSTR_C$ (0EH) Register description for the configuration procedure.

Bit	Name	Description	Type	Default
7:2	Reserved			
1	XmtJ1Acc	This bit allows microprocessor read/write operations to be in control of incrementing the string pointer. This functionality is normally used only during initialization, to verify the string value configured by the microprocessor.	W	1
		0 = Normal operation. The internal hardware process that is inserting this string into the outgoing STM frame has exclusive access to it.		
		1 = The microprocessor read/write operations increment the string pointer. During this operation a value of 01H is transmitted in the outgoing J1 byte.		
0	ResetXmtJ1StrgPntr	A transition from 0 to 1 in this bit resets the J1 transmit string pointer.	W	0

J1_TSTR_D—J1 Transmit String Data (76H)

Bit	Name	Description	Туре	Default
7:0	XmtJ1StrgData<7:0>	Bits <7:0> correspond to data bits 7:0, respectively.	R/W	00H

Interrupt Source Registers

IS_RG—Receive Regenerator Section Interrupt Source (A0H)

Each of these bits can cause the chip interrupt pin to become active if enabled via the bits in the Receive Interrupt Enable Register 1.

Bit	Name	Description	Туре	Default
7	OofOvrFlw	This bit is set when the <i>OOF_ECNT</i> error counter rollover occurs. It is cleared when the counter is read.	RO	0
6	B1OvrFlw	This bit is set when the <i>B1_ERRCNT</i> error counter rollover occurs. It is cleared when the counter is read.	RO	0
5:4	Reserved			
3	Bpv	Only updated for STM-0 serial interface B3ZS encoding. This bit is set when a bipolar violation occurs on either the DHPOSD or DHNEGD pins. It is cleared when this register is read.	RO	0
2	Los	This bit is set when there is a change in the <i>LosSt</i> bit (C0H<2>). It is cleared when status register (C0H) is read.	RO	0
1	Lof	This bit is set when there is a change in the <i>LofSt</i> bit (C0H<1>). It is cleared when status register (C0H) is read.	RO	0
0	Oof	This bit is set when there is a change in the <i>OofSt</i> bit (C0H<0>). It is cleared when status register (C0H) is read.	RO	0

IS_RGMUX—Receive Regenerator and Multiplexor Section Interrupt Source (A1H)

Each of this bit can cause the chip interrupt pin to become active if enabled via the bits in the Receive Interrupt Enable Register 2.

Bit	Name	Description	Туре	Default
7	RcvK1Chg	This bit is set when there is a change in the R_KI register (00H) register. It is cleared when that register is read.	RO	0
6	RcvK2Chg	This bit is set when there is a change in the R_K2 (01H) register. It is cleared when that register is read.	RO	0
5	MspSF	This bit is set when there is a change in the <i>MspSFSt</i> bit (C1H<5>). It is cleared when status register (C1H) is read.	RO	0
4	MstRdi	This bit is set when there is a change in the <i>MstRdiSt</i> bit (C1H<4>). It is cleared when status register (C1H) is read.	RO	0
3	ExcB2Err	This bit is set when there is a change in the <i>ExcB2ErrSt</i> bit (C1H<3>). It is cleared when status register (C1H) is read.	RO	0
2	MstAis	This bit is set when there is a change in the <i>MstAisSt</i> bit (C1H<2>). It is cleared when status register (C1H) is read.	RO	0
1	J0MsMtch	This bit is set when there is a change in the <i>JOMsMtchSt</i> bit (C1H<1>). It is cleared when status register (C1H) is read.	RO	0
0	J0Crc7Err	This bit is set when there is a change in the <i>J0Crc7ErrSt</i> bit (C1H<0>). It is cleared when status register (C1H) is read.	RO	0

IS_MUX—Receive Multiplexor Section Interrupt Source (A2H)

Each of these bits can cause the chip interrupt pin to become active if enabled via the bits in the Receive Interrupt Enable Register 3.

Bit	Name	Description	Туре	Default
7:5	Reserved			
4	RcvS1Chg	This bit is set when there is a change in the R_SI register (02H). It is cleared when that register is read.	RO	0
3	B2BitOvrFlw	This bit is set when a <i>B2_BIPCNT</i> error counter rollover occurs. It is cleared when the counter is read.	RO	0
2	B2BlkOvrFlw	This bit is set when a <i>B2_BLKCNT</i> error counter rollover occurs. It is cleared when the counter is read.	RO	0
1	MstReiBitOvrFlw	This bit is set when a MR_BIPCNT error counter rollover occurs. It is cleared when the counter is read.	RO	0
0	MstReiBlkOvrFlw	This bit is set when a <i>MR_BLKCNT</i> error counter rollover occurs. It is cleared when the counter is read.	RO	0

IS_PROT—Receive Protection Section Interrupt Source (A3H)

The interrupts in this byte should **ONLY** be enabled when the chip is configured as an ADM Protection Main or a Terminal Protection Main. Each of these bits can cause the chip interrupt pin to become active if enabled via the bits in the Receive Interrupt Enable Register 4.

Bit	Name	Description	Туре	Default
7:4	Reserved			
3	ProtSF	This bit is set when the DMSPPSF input changes state. It is cleared when status register (C3H) is read.	RO	0
2	ProtSD	This bit is set when the DMSPPSD input changes state. It is cleared when status register (C3H) is read.	RO	0
1	ProtK1Chg	This bit is set when there is a change in the R_ProtK1 (22H) register. It is cleared when that register is read.	RO	0
0	ProtK2Chg	This bit is set when there is a change in the <i>R_ProtK2</i> (23H) register. It is cleared when that register is read.	RO	0

IS_A_HPT—Receive Adaptation and HPT Interrupt Source (A4H)

Each of this bit can cause the chip interrupt pin to become active if enabled via the bits in the Receive Interrupt Enable Register 5.

Bit	Name	Description	Туре	Default
7	Lop	This bit is set when there is a change in the <i>LopSt</i> bit (C4H<7>). It is cleared when status register (C4H) is read.	RO	0
6	NewDataFlg	This bit is set when there is a change in the <i>NewDataFlgSt</i> bit (C4H<6>). It is cleared when status register (C4H) is read.	RO	0
5	AuAis	This bit is set when there is a change in the <i>AuAisSt</i> bit (C4H<5>). It is cleared when status register (C4H) is read.	RO	0
4	RcvAuNegOvrFlw	This bit is set when a <i>R_AU_NgNt</i> error counter rollover occurs. It is cleared when the counter is read.	RO	0
3	RcvAuPosOvrFlw	This bit is set when a <i>R_AU_PcNt</i> error counter rollover occurs. It is cleared when the counter is read.	RO	0
2	VcAis	This bit is set when there is a change in the <i>VcAisSt</i> bit (C4H<2>). It is cleared when status register (C4H) is read.	RO	0
1	RcvC2Chg	This bit is set when there is a change in the R_C2 register (83H). It is cleared when that register is read.	RO	0
0	RcvK3Chg	This bit is set when there is a change in the R_K3 register (84H). It is cleared when that register is read.	RO	0

IS_HPT—Receive HPT Interrupt Source (A5H)

Each of these bits can cause the chip interrupt pin to become active if enabled via the bits in the Receive Interrupt Enable Register 6.

Bit	Name	Description	Type	Default
7	J1MsMtch	This bit is set when there is a change in the <i>J1MsMtchSt</i> bit (C5H<7>). It is cleared when the status register (C5H) is read.	RO	0
6	J1Crc7Err	This bit is set when there is a change in the <i>J1Crc7St</i> bit (C5H<6>). It is cleared when the status register (C5H) is read.	RO	0
5	HptUnEqp	This bit is set when there is a change in the <i>HptUneqSt</i> bit (C5H<5>). It is cleared when the status register (C5H) is read.	RO	0
4	HptSlm	This bit is set when there is a change in the <i>HptSlmSt</i> bit (C5H<4>). It is cleared when the status register (C5H) is read.	RO	0
3	HptRdi	This bit is set when the register $85H<3:1>$ bits (filtered received G1 RDI bits) change (see $G1RdiDetCnt = 80H<7>$. It is cleared when register $85H$ is read.	RO	0
2	HpaLom	This bit is set when there is a change in the <i>HpaLomSt</i> bit (C5H<2>). It is cleared when the status register (C5H) is read.	RO	0
1	HptReiOvrFlw	This bit is set when the value in the <i>HPTREI_CNT</i> counter roll-over. It is cleared when the counter is read.	RO	0
0	B3OvrFlw	This bit is set when the value in the <i>B3_ECNT</i> counter rollover. It is cleared when the counter is read.	RO	0

IS_RETIME—Receive Retiming Interrupt Source (A6H)

Each of these bits can cause the chip interrupt pin to become active if enabled via the bits in the Receive Interrupt Enable Register 7.

Bit	Name	Description	Туре	Default
7:1	Reserved			
0	RcvFifoOvrFlw	Indicates that the receive FIFO has overflowed. It is cleared when the register is read. It is only valid when receive re-timing is enabled (<i>RcvRetimDsbl</i> = 51H<3> = 0). 0 = No overflow 1 = Overflow	RO	0

IS_XMT—Transmit Interrupt Source (E0H)

Each of these bits can cause the chip interrupt pin to become active if enabled via the bits the Transmit Interrupt Enable Register.

Bit	Name	Description	Туре	Default
7:4	Reserved			
3	XmtAuNegOvrFlw	This bit is set when an T_AU_NCNT error counter rollover occurs. It is cleared when the counter is read.	RO	0
2	XmtAuPosOvrFlw	This bit is set when an T_AU_PCNT error counter rollover occurs. It is cleared when the counter is read.	RO	0
1	XmtFifoOvrFlw	Indicates that the transmit FIFO has overflowed It is cleared when this register is read. 0 =No overflow 1 = Overflow	RO	0
0	XmtTbParOvrFlw	Transmit telecom bus (MTBDATA) parity overflow indication. A parity error on the 8 bit telecom bus value increments a counter which overflows at 3 setting this bit. The counter and this bit are cleared when this register is read. 0 = No overflow 1 = Overflow	RO	0

IS_GLOB—Global Interrupt Source (D1H)

This register indicates that an interrupt register contains an active interrupt.

Bit	Name	Description	Туре	Default
7	XmtRegInt	Indicates that an interrupt in the <i>IS_XMT</i> register (E0H) is active.	RO	X
		0 = No active interrupts		
		1 = active interrupts		
6	RcvRetimRegInt	Indicates that an interrupt in the <i>IS_RETIME</i> register (A6H) is active.	RO	X
		0 = No active interrupts		
		1 = active interrupts		
5	RcvHptRegInt	Indicates that an interrupt in the <i>IS_HPT</i> register (A5H) is active.	RO	X
		0 = No active interrupts		
		1 = active interrupts		
4	RcvAdapRegInt	Indicates that an interrupt in the <i>IS_A_HPT</i> register (A4H) is active.	RO	X
		0 = No active interrupts		
		1 = active interrupts		
3	RcvProtRegInt	Indicates that an interrupt in the <i>IS_PROT</i> register (A3H) is active.	RO	X
		0 = No active interrupts		
		1 = active interrupts		
2	RcvMuxRegInt	Indicates that an interrupt in the <i>IS_MUX</i> register (A2H) is active.	RO	X
		0 = No active interrupts		
		1 = active interrupts		
1	RcvRegenMuxRegInt	Indicates that an interrupt in the <i>IS_RGMUX</i> register (A1H) is active.	RO	X
		0 = No active interrupts		
		1 = active interrupts		
0	RcvRegenRegInt	Indicates that an interrupt in the <i>IS_RG</i> register (A0H) is active.	RO	X
		0 = No active interrupts		
		1 = active interrupts		

Interrupt Enable Registers

All of the interrupt registers in the above section are capable of activating the chip interrupt pin if their corresponding interrupt enable bits are set to 1. Default value is 0 (disabled). The Interrupt Enable Register bit assignments mirror the assignments in the corresponding Interrupt Source Registers. For example, the status bits in the IS_RG Register (A0H) are enabled by setting the corresponding bit location in the IE_RG Register (B0H).

IE_RG—Receive Regenerator Section Interrupt Enable (B0H)

Interrupt enable register for IS_RG.

IE_RGMUX—Receive Regenerator and Multiplexer Section Interrupt Enable (B1H)

Interrupt enable register for IS_RGMUX.

IE_MUX—Receive Multiplexor Section Interrupt Enable (B2H)

Interrupt enable register for IS_MUX.

IE_PROT—Receive Protection Section Interrupt Enable (B3H)

Interrupt enable register for IS_PROT.

IE_A_HPT—Receive Adaptation and HPT Interrupt Enable (B4H)

Interrupt enable register for IS_A_HPT.

IE_HPT—Receive HPT Interrupt Enable (B5H)

Interrupt enable register for IS_HPT.

IE_RETIME—Receive Retiming Interrupt Enable (B6H)

Interrupt enable register for IS_RETIME.

IE_XMT—Transmit Interrupt Enable (E1H)

Interrupt enable register IS_XMT.

Status Registers

These registers are closely associated with the interrupt source registers. Almost all of the interrupt source bits have an associated status bit. Generally, when an interrupt is being acknowledged, the status bit will be checked to see the present status of the interrupt-generating source. Overflow interrupt sources do not have status bits associated with them since the counter acts as "status." Byte change interrupt sources do not have status bits associated with them since the received byte acts as "status."

S_RG—Receive Regenerator Section Status (C0H).

Bit	Name	Description	Туре	Default
7:3	Reserved			
2	LosSt	Present status of Loss of Signal detect	RO	X
		0 = No LOS		
		1 = LOS		
1	LofSt	Present status of Loss of Frame detect	RO	X
		0 = No LOF		
		1 = LOF		
0	OofSt	Present status of Out of Frame detect	RO	X
		0 = No OOF		
		1 = OOF		

S_RGMUX—Receive Regenerator and Multiplexer Section Status (C1H)

Bit Name Description Type Default 7:6 Reserved RO X MspSfSt This bit indicates the present status of the Signal Fail detection. For both MASTER and SLAVE configurations the value is reflected at the SF output pin. When configured as a SLAVE the value is also reflected at the DMSPPSF output pin. 0 = No Signal Fail 1 =Signal Fail = MstAisSt OR (AisOnExcB2En AND ExcB2ErrSt). MstRdiSt Detection of "110" in *RcvK*2<2:0> bits (01H). RO X 0 = No "110" detect 1 = "110" detect Present status of excessive BER detects 3 ExcB2ErrSt RO X 0 = No excessive BER 1 = Excessive BERDetection of "111" in *RcvK*2<2:0> bits (01H) 2 MstAisSt RO X 0 = No "111" detect 1 = "111" detect

Bit	Name	Description	Type	Default
1	J0MsMtchSt	Present status of comparison between received and expected J0 string	RO	X
		0 = OK comparison		
		1 = Bad comparison		
0	J0Crc7ErrSt	Present status of comparison between received and expected J0 string CRC-7 value	RO	X
		0 = OK comparison		
		1 = Bad comparison		

S_PROT—Receive Protection Section Status (C3H)

These status bits are only relevant when the chip is configured as an ADM Protection Main or a Terminal Protection Main. They reflect the protection bus DMSPPSF and DMSPPSD input values (a slave's DMSPPSD output is updated by a microprocessor write to SigDegrade = 21H < 1 >. A slave's DMSPPSF output is updated whenever MspSFSt is updated).

Bit	Name	Description	Туре	Default
7:4	Reserved			
3	ProtSfSt	Present status of DMSPPSF input	RO	X
2	ProtSdSt	Present status of DMSPPSD input	RO	X
1:0	Reserved			

S_A_HPT—Receive Adaptation and HPT Status (C4H)

.

Bit	Name	Description	Туре	Default
7	LopSt	Present status of Loss of Pointer detects	RO	X
		0 = No LOP		
		1 = LOP - Invalid pointer value OR (SS bits!= "10" AND AuP-ntrSSEn)		
6	NewDataFlgSt	Present status of New Data Flag.	RO	X
		0 = NDF = 0		
		1 = NDF = 1		
5	AuAisSt	Present status of Pointer processing AIS detects	RO	X
		0 = No AIS		
		1= AIS – H1:H2 bytes (AU pointer) = "11111111 11111111"		
4:3	Reserved			
2	VcAisSt	Present status of VC AIS detect	RO	X
		0 = No AIS		
		1 – AIS – C2 (signal label) = "11111111"		
1:0	Reserved			

S_HPT—Receive HPT Status (C5H)

.

Bit	Name	Description	Туре	Default
7	J1MsMtchSt	Present status of comparison between received and expected J1	RO	X
		string.		
		0 = OK comparison		
		1 = Bad comparison		
6	J1Crc7ErrSt	Present status of comparison between received and expected J1 string CRC-7 value.	RO	X
		0 = OK comparison		
		1 = Bad comparison		
5	HptUnEqpSt:	Present status of unequipped status detects	RO	X
		0 = Equipped		
		1 = Unequipped – C2 = "00000000" AND (see register 81H)		
4	HptSlmSt	Present status of Signal Label Mismatch detection	RO	X
		0 = No mismatch		
		1 = Mismatch – (<i>RcvC</i> 2!= <i>ExpcC</i> 2) AND (<i>RcvC</i> 2 != 00H) AND (<i>RcvC</i> 2 != 01H)		
3	Reserved			
2	HpaLomSt	Present status of Loss of Multiframe detects	RO	X
		0 = No LOM		
		1 = LOM		
1:0	Reserved			

S_AIS_PROT—Receive AIS & Protection Switch Status (D0H)

This register is used primarily for testing purposes. It indicates the status of internal chip logic for AIS generation processes and protection switch status.

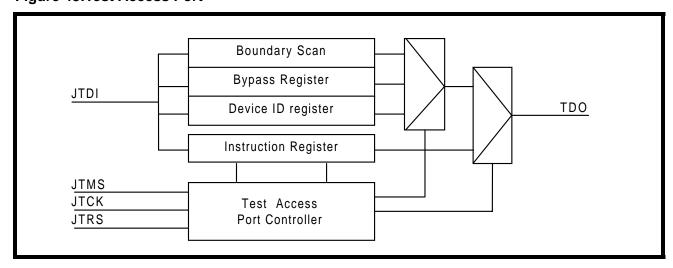
Bit	Name	Description	Type	Default
7	GenRstAisSt	Present status of receive side RST AIS generator.	RO	X
		0 = No AIS		
		1 = AIS - (see register 40H)		
6	GenMstAisSt	Present status of receive side MST AIS generator.	RO	X
		0 = No AIS		
		1 = AIS - (RcvMstAisEn AND MspSFSt) OR RcvMstAisFrc		
5	GenMsaAisSt	Present status of receive side MSA AIS generator.	RO	X
		0 = No AIS		
		1 = AIS = (RcvMsaAisEn AND (AuAisSt OR LopSt)) OR RcvMsaAisFrc		
4	GenHptAisSt	Present status of receive side HPT AIS generator. The value of this bit is reflected at the AISRX output pin.	RO	X
		0 = No AIS		
		1 = AIS – (RcvHptAisEn AND (HptSlmSt OR HptUneqSt OR J1MsMtchSt)) OR RcvHptAisFrc		
3:1	Reserved			
0	ProtSwSt	Protection switch status (this bit value is identical to <i>ProtSw</i> bit value).	RO	X
		0 = Protecting		
		1 = Not protecting		

TESTABILITY

The SXT6051 provides a method for enhancing testability; IEEE1149.1 Boundary Scan (JTAG) is used for testing of the interconnect.

IEEE 1149.1 Boundary Scan

The boundary scan circuitry allows the user to test the interconnection between the SXT6051 and the circuit board.

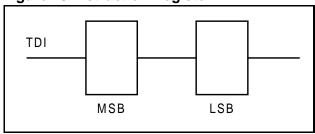

The boundary scan port consists of 5 pins as shown in the table below. The heart of the scan circuitry is the Test Access Port controller (TAP). The TAP controller is a state machine that controls the function of the boundary scan circuitry. Inputs to the TAP controller are the Test Mode Select (JTMS) and the Test Clock (JTCK) signals.

Data and instructions are shifted into the SXT6051 through the Test Data In input pin (JTDI). Data and instructions are shifted out through the Test Data Out output pin (JTDO). An asynchronous reset pin (JTRS) allows resetting of the boundary scan circuitry.

Table 29: Boundary Scan Port

Pin#	Name	I/O	Function
109	JTMS	Ι	Test Mode Select: Determines state of TAP Controller. Pull up 48k
110	JTCK	Ι	Test Clock: Clock for all boundary scan cir- cuitry
108	JTRS	I	Test Reset: Active Low asynchronous signal that causes the TAP controller to reset. Pull down 35k
107	JTDI	Ι	Test Data In: input for instructions and data. Pull up 48k
106	JTDO	О	Test data Out: Output of instructions and data.

Figure 48:Test Access Port



Instruction Register and Definitions

The SXT6051 supports the following instructions identified by IEEE1149.1: EXTEST, SAMPLE/PRELOAD, BYPASS and IDCODE. Instructions are shifted into the instruction register during the SHIFT-IR state, and become active upon exiting the UPDATE-IR state. The instruction register definition is shown in the following figure.

Figure 49:Instruction Register

EXTEST ('b00): This instruction allows the testing of circuitry external to the package (typically the board interconnect) to be tested. While the instruction is active, the boundary scan register is connected between TDI and TDO, for any data shifts. Boundary scan cells at the output pins are used to apply test stimuli, while those at input pins capture test results. Signals present on input pins are loaded into the BSR inputs cells on the rising edge of JTCK during CAPTURE-DR state. BSR input cell contents are shifted one bit location on each rising edge of JTCK during the SHIFT-DR state. BSR output cell contents appear at output pins on the falling edge of JTCK during the UPDATE-IR state.

One test cycle is:

- A test stimuli pattern is shifted into the BSR during SHIFT-DR state
- 2. This pattern is applied to output pins during the UPDATE-DR state
- The response is loaded in to input BSR cells during the CAPTURE-DR state
- The results are shifted out and next test stimuli shifted into the BSR

SAMPLE/PRELOAD (**'b01):** This instruction allows a snapshot of the normal operation of the SXT6051. The boundary scan register is connected between the TDI and TDO for any data shifts while this instruction is active. All BSR cells capture data present at their inputs on the rising edge of JTCK during the CAPTURE-DR state. No action is taken during the UPDATE-DR state.

BYPASS (**'b11):** This instruction allows a device to be removed from the scan chain by inserting a one-bit shift register stage between TDI and TDO during data shifts. When the instruction is active, the test logic has no impact upon the system logic performing its function. When selected, the shift-register is set to a logic zero on the rising edge of the JTCK during the CAPTURE-DR state.

IDCODE (**'b10**): This instruction allows the reading of component types via the scan chain. During this instruction, the 32-bit Device Identification Register (ID-Register) is placed between TDI and TDO. The ID Register captures a fixed value of (117A30FDH) on the rising edge of JTCK during the CAPTURE-DR state. The Device Identification Register contains the following information: Manufacturer ID: 'd126; Design Part Number: 'd 6051; Design Version Number: 'd1.

Boundary Scan Register

The Boundary Scan Register is a 209-bit shift register, made of two types of 4 types of shift-register cells. According to the Boundary Scan Description Language (BSDL), JTAG_BSRINBOTH, JTAG_BSROUTBOTH and JTAG_BSRCTL are designated TYPE2, JTAG_BSRINCLKOBS are designated TYPE1.

Summary Information

Length	209 BSR cells
JTCK	JTAG Test Clock
JTDI	JTAG Test Data Input
JTDO_C	JTAG Test Data Output Control enable (internal signal)
JTDO	JTAG Test Data Output
JTMS	JTAG Test Mode Select
JTRS	JTAG Test Reset

Figure 50:Boundary Scan Cell

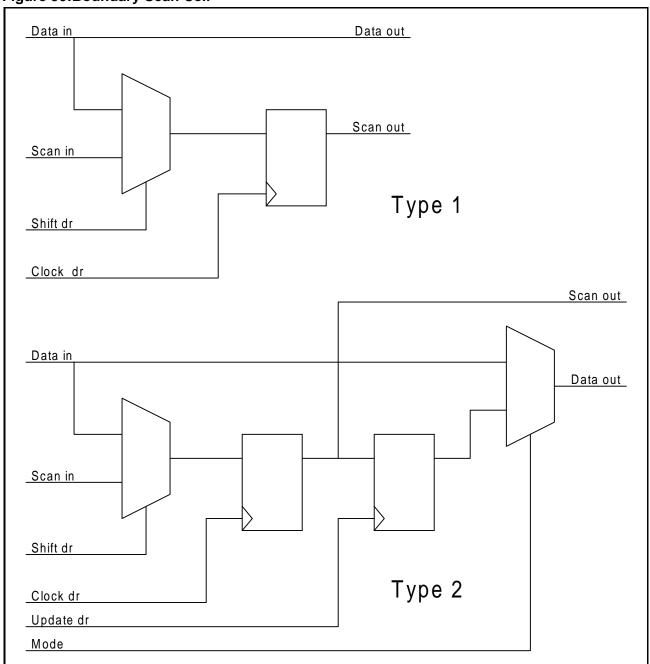


Table 30: Boundary Scan Order (Sheet 1 of 6)

Pin Name	Туре	Numbering in Scan chain	Type of BSR Cell	Associated Control enable
SCANEN	Data	1	JTAG_BSRINBOTH	
DRETCLK	Clock	2	JTAG_BSRINCLKOBS	
DRETFRMI	Data	3	JTAG_BSRINBOTH	
B3OUT	Data	4	JTAG_BSROUTBOTH	OEN_C
RPOWBYC	Data	5	JTAG_BSROUTBOTH	TB3Z_C
RPOWC	Data	6	JTAG_BSROUTBOTH	TB3Z_C
RPOW2	Data	7	JTAG_BSROUTBOTH	TB3Z_C
RPOW1	Data	8	JTAG_BSROUTBOTH	TB3Z_C
RPOHEN	Data	9	JTAG_BSROUTBOTH	TB3Z_C
RPOHFR	Data	10	JTAG_BSROUTBOTH	TB3Z_C
RPOHCK	Data	11	JTAG_BSROUTBOTH	TB3Z_C
RPOH	Data	12	JTAG_BSROUTBOTH	TB3Z_C
B2OUT	Data	13	JTAG_BSROUTBOTH	OEN_C
RMDC	Data	14	JTAG_BSROUTBOTH	OEN_C
RMD	Data	15	JTAG_BSROUTBOTH	OEN_C
RRDC	Data	16	JTAG_BSROUTBOTH	OEN_C
RRD	Data	17	JTAG_BSROUTBOTH	OEN_C
RDOW	Data	18	JTAG_BSROUTBOTH	OEN_C
RMOW	Data	19	JTAG_BSROUTBOTH	OEN_C
ROWBYC	Data	20	JTAG_BSROUTBOTH	OEN_C
ROWC	Data	21	JTAG_BSROUTBOTH	OEN_C
RROW	Data	22	JTAG_BSROUTBOTH	OEN_C
RSOHFR	Data	23	JTAG_BSROUTBOTH	OEN_C
RSOHEN	Data	24	JTAG_BSROUTBOTH	OEN_C
RSOH	Data	25	JTAG_BSROUTBOTH	OEN_C
DMSPPSD /O	Data	26	JTAG_BSROUTBOTH	DMSPP_C
DMSPPSD /I	Data	27	JTAG_BSRINBOTH	
DMSPPSF /O	Data	28	JTAG_BSROUTBOTH	DMSPP_C
DMSPPSF /I	Data	29	JTAG_BSRINBOTH	
DMSPPAUEN /O	Data	30	JTAG_BSROUTBOTH	DMSPP_C
DMSPPAUEN /I	Data	31	JTAG_BSRINBOTH	DMSPP_C
DMSPPJ0EN /O	Data	32	JTAG_BSROUTBOTH	DMSPP_C
DMSPPJ0EN /I	Data	33	JTAG_BSRINBOTH	
DMSPPCKI	Clock	34	JTAG_BSRINCLKOBS	

Table 30: Boundary Scan Order (Sheet 2 of 6)

Pin Name	Туре	Numbering in Scan chain	Type of BSR Cell	Associated Control enable
DMSPPCKO	Data	35	JTAG_BSROUTBOTH	OEN_C
DMSPP_C (internal)	Enbl	36	JTAG_BSRCTL	
DMSPPDATA /O<7>	Data	37	JTAG_BSROUTBOTH	DMSPP_C
DMSPPDATA /I<7>	Data	38	JTAG_BSRINBOTH	
DMSPPDATA /O<6>	Data	39	JTAG_BSROUTBOTH	DMSPP_C
DMSPPDATA /I<6>	Data	40	JTAG_BSRINBOTH	
DMSPPDATA /O<5>	Data	41	JTAG_BSROUTBOTH	DMSPP_C
DMSPPDATA /I<5>	Data	42	JTAG_BSRINBOTH	
DMSPPDATA /O<4>	Data	43	JTAG_BSROUTBOTH	DMSPP_C
DMSPPDATA /I<4>	Data	44	JTAG_BSRINBOTH	
DMSPPDATA /O<3>	Data	45	JTAG_BSROUTBOTH	DMSPP_C
DMSPPDATA /I<3>	Data	46	JTAG_BSRINBOTH	
DMSPPDATA /O<2>	Data	47	JTAG_BSROUTBOTH	DMSPP_C
DMSPPDATA /I<2>	Data	48	JTAG_BSRINBOTH	
DMSPPDATA /O<1>	Data	49	JTAG_BSROUTBOTH	DMSPP_C
DMSPPDATA /I<1>	Data	50	JTAG_BSRINBOTH	
DMSPPDATA /O<0>	Data	51	JTAG_BSROUTBOTH	DMSPP_C
DMSPPDATA /I<0>	Data	52	JTAG_BSRINBOTH	
OEN	Data	53	JTAG_BSRINBOTH	
SCANTEST	Data	54	JTAG_BSRINBOTH	
DHPOSD	Data	55	JTAG_BSRINBOTH	
DHNEGD	Data	56	JTAG_BSRINBOTH	
DHICLK	Clock	57	JTAG_BSRINCLKOBS	
LOS	Data	58	JTAG_BSRINBOTH	
DHBDATA <0>	Data	59	JTAG_BSRINBOTH	
DHBDATA <1>	Data	60	JTAG_BSRINBOTH	
DHBDATA <2>	Data	61	JTAG_BSRINBOTH	
DHBDATA <3>	Data	62	JTAG_BSRINBOTH	
DHBDATA <4>	Data	63	JTAG_BSRINBOTH	
DHBDATA <5>	Data	64	JTAG_BSRINBOTH	
DHBDATA <6>	Data	65	JTAG_BSRINBOTH	
DHBDATA <7>	Data	66	JTAG_BSRINBOTH	
DHBCLK	Clock	67	JTAG_BSRINCLKOBS	
STMMODE	Data	68	JTAG_BSRINBOTH	
B1OUT	Data	69	JTAG_BSROUTBOTH	OEN_C
AISRX	Data	70	JTAG_BSROUTBOTH	OEN_C

Table 30: Boundary Scan Order (Sheet 3 of 6)

Pin Name	Туре	Numbering in Scan chain	Type of BSR Cell	Associated Control enable
LOF	Data	71	JTAG_BSROUTBOTH	OEN_C
OOF	Data	72	JTAG_BSROUTBOTH	OEN_C
OEN_C (internal)	Enbl	73	JTAG_BSRCTL	
SD	Data	74	JTAG_BSROUTBOTH	OEN_C
SF	Data	75	JTAG_BSROUTBOTH	OEN_C
SCRAMSEL	Data	76	JTAG_BSRINBOTH	
MFRMO	Data	77	JTAG_BSROUTBOTH	OEN_C
MFRMI	Data	78	JTAG_BSRINBOTH	
MHICLK	Clock	79	JTAG_BSRINCLKOBS	
MHBCLKI	Clock	80	JTAG_BSRINCLKOBS	
MMSAPAYEN	Data	81	JTAG_BSROUTBOTH	TB3Z_C
MMSAJ1EN	Data	82	JTAG_BSROUTBOTH	TB3Z_C
PARSEL_C (internal)	Enbl	83	JTAG_BSRCTL	
MHBCLKO	Data	84	JTAG_BSROUTBOTH	PARSEL_C
MHBDATA <0>	Data	85	JTAG_BSROUTBOTH	PARSEL_C
MHBDATA <1>	Data	86	JTAG_BSROUTBOTH	PARSEL_C
MHBDATA <2>	Data	87	JTAG_BSROUTBOTH	PARSEL_C
MHBDATA <3>	Data	88	JTAG_BSROUTBOTH	PARSEL_C
MHBDATA <4>	Data	89	JTAG_BSROUTBOTH	PARSEL_C
MHBDATA <5>	Data	90	JTAG_BSROUTBOTH	PARSEL_C
MHBDATA <6>	Data	91	JTAG_BSROUTBOTH	PARSEL_C
MHBDATA <7>	Data	92	JTAG_BSROUTBOTH	PARSEL_C
MICLK	Data	93	JTAG_BSROUTBOTH	SERSEL_C
MHNEGD	Data	94	JTAG_BSROUTBOTH	SERSEL_C
SERSEL_C (internal)	Enbl	95	JTAG_BSRCTL	
MHPOSD	Data	96	JTAG_BSROUTBOTH	SERSEL_C
MMSPP_C (internal)	Enbl	97	JTAG_BSRCTL	
MMSPPDATA /O<0>	Data	98	JTAG_BSROUTBOTH	MMSPP_C
MMSPPDATA /I<0>	Data	99	JTAG_BSRINBOTH	
MMSPPDATA /O<1>	Data	100	JTAG_BSROUTBOTH	MMSPP_C
MMSPPDATA /I<1>	Data	101	JTAG_BSRINBOTH	
MMSPPDATA /O<2>	Data	102	JTAG_BSROUTBOTH	MMSPP_C
MMSPPDATA /I<2>	Data	103	JTAG_BSRINBOTH	
MMSPPDATA /O<3>	Data	104	JTAG_BSROUTBOTH	MMSPP_C
MMSPPDATA /I<3>	Data	105	JTAG_BSRINBOTH	
MMSPPDATA /O<4>	Data	106	JTAG_BSROUTBOTH	MMSPP_C

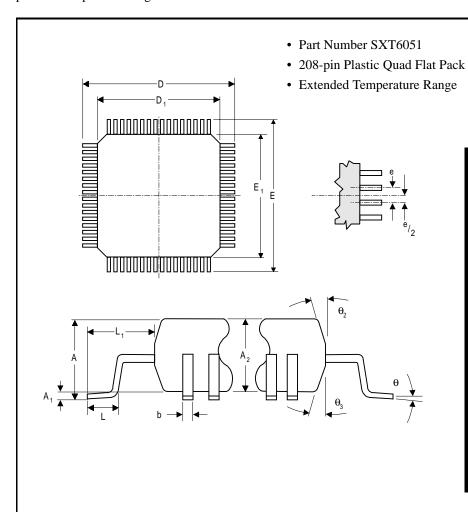
Table 30: Boundary Scan Order (Sheet 4 of 6)

Pin Name	Туре	Numbering in Scan chain	Type of BSR Cell	Associated Control enable
MMSPPDATA /I<4>	Data	107	JTAG_BSRINBOTH	
MMSPPDATA /O<5>	Data	108	JTAG_BSROUTBOTH	MMSPP_C
MMSPPDATA /I<5>	Data	109	JTAG_BSRINBOTH	
MMSPPDATA /O<6>	Data	110	JTAG_BSROUTBOTH	MMSPP_C
MMSPPDATA /I<6>	Data	111	JTAG_BSRINBOTH	
MMSPPDATA /O<7>	Data	112	JTAG_BSROUTBOTH	MMSPP_C
MMSPPDATA /I<7>	Data	113	JTAG_BSRINBOTH	
MMSPPCKI	Clock	114	JTAG_BSRINCLKOBS	
MMSPPCKO	Data	115	JTAG_BSROUTBOTH	OEN_C
MMSPPAUEN	Data	116	JTAG_BSROUTBOTH	MMSPP_C
MMSPPJ0EN /O	Data	117	JTAG_BSROUTBOTH	MMSPP_C
MMSPPJ0EN /I	Data	118	JTAG_BSRINBOTH	
TSOH	Data	119	JTAG_BSRINBOTH	
TSOHEN	Data	120	JTAG_BSROUTBOTH	OEN_C
TSOHFR	Data	121	JTAG_BSROUTBOTH	OEN_C
TROW	Data	122	JTAG_BSRINBOTH	
TOWC	Data	123	JTAG_BSROUTBOTH	OEN_C
TMOW	Data	124	JTAG_BSRINBOTH	
TDOW	Data	125	JTAG_BSRINBOTH	
TOWBYC	Data	126	JTAG_BSROUTBOTH	OEN_C
TRD	Data	127	JTAG_BSRINBOTH	
TRDC	Data	128	JTAG_BSROUTBOTH	OEN_C
TMD	Data	129	JTAG_BSRINBOTH	
TMDC	Data	130	JTAG_BSROUTBOTH	OEN_C
ТРОН	Data	131	JTAG_BSRINBOTH	
ТРОНСК	Data	132	JTAG_BSROUTBOTH	TB3Z_C
TPOHFR	Data	133	JTAG_BSROUTBOTH	TB3Z_C
TPOHEN	Data	134	JTAG_BSROUTBOTH	TB3Z_C
TPOW1	Data	135	JTAG_BSRINBOTH	
TPOW2	Data	136	JTAG_BSRINBOTH	
TPOWC	Data	137	JTAG_BSROUTBOTH	TB3Z_C
TPOWBYC	Data	138	JTAG_BSROUTBOTH	TB3Z_C
RDB_C (internal)	Enbl	139	JTAG_BSRCTL	
DATA /I<7>	Data	140	JTAG_BSRINBOTH	
DATA /O<7>	Data	141	JTAG_BSROUTBOTH	RDB_C
DATA /I<6>	Data	142	JTAG_BSRINBOTH	

Table 30: Boundary Scan Order (Sheet 5 of 6)

Pin Name	Туре	Numbering in Scan chain	Type of BSR Cell	Associated Control enable
DATA /O<6>	Data	143	JTAG_BSROUTBOTH	RDB_C
DATA /I<5>	Data	144	JTAG_BSRINBOTH	
DATA /O<5>	Data	145	JTAG_BSROUTBOTH	RDB_C
DATA /I<4>	Data	146	JTAG_BSRINBOTH	
DATA /O<4>	Data	147	JTAG_BSROUTBOTH	RDB_C
DATA /I<3>	Data	148	JTAG_BSRINBOTH	
DATA /O<3>	Data	149	JTAG_BSROUTBOTH	RDB_C
DATA /I<2>	Data	150	JTAG_BSRINBOTH	
DATA /O<2>	Data	151	JTAG_BSROUTBOTH	RDB_C
DATA /I<1>	Data	152	JTAG_BSRINBOTH	
DATA /O<1>	Data	153	JTAG_BSROUTBOTH	RDB_C
DATA /I<0>	Data	154	JTAG_BSRINBOTH	
DATA /O<0>	Data	155	JTAG_BSROUTBOTH	RDB_C
AD <7>	Data	156	JTAG_BSRINBOTH	
AD6	Data	157	JTAG_BSRINBOTH	
AD5	Data	158	JTAG_BSRINBOTH	
AD4	Data	159	JTAG_BSRINBOTH	
AD3	Data	160	JTAG_BSRINBOTH	
AD2	Data	161	JTAG_BSRINBOTH	
AD1	Data	162	JTAG_BSRINBOTH	
AD0	Data	163	JTAG_BSRINBOTH	
CS	Data	164	JTAG_BSRINBOTH	
AS	Data	165	JTAG_BSRINBOTH	
WR/RW	Clock	166	JTAG_BSRINCLKOBS	
RD/E	Data	167	JTAG_BSRINBOTH	
MRESET	Data	168	JTAG_BSRINBOTH	
INT	Data	169	JTAG_BSROUTBOTH	OEN_C
MCUTYPE	Data	170	JTAG_BSRINBOTH	
MTBDATA [7]	Data	171	JTAG_BSRINBOTH	
MTBDATA [6]	Data	172	JTAG_BSRINBOTH	
MTBDATA [5]	Data	173	JTAG_BSRINBOTH	
MTBDATA [4]	Data	174	JTAG_BSRINBOTH	
MTBDATA [3]	Data	175	JTAG_BSRINBOTH	
MTBDATA [2]	Data	176	JTAG_BSRINBOTH	
MTBDATA [1]	Data	177	JTAG_BSRINBOTH	
MTBDATA [0]	Data	178	JTAG_BSRINBOTH	

Table 30: Boundary Scan Order (Sheet 6 of 6)


Pin Name	Туре	Numbering in Scan chain	Type of BSR Cell	Associated Control enable
MTBPAR	Data	179	JTAG_BSRINBOTH	
MTBCKI	Clock	180	JTAG_BSRINCLKOBS	
TB3Z_C (internal)	Enbl	181	JTAG_BSRCTL	
МТВСКО	Data	182	JTAG_BSROUTBOTH	TB3Z_C
TB_C (internal)	Enbl	183	JTAG_BSRCTL	
MTBJ0J1EN /O	Data	184	JTAG_BSROUTBOTH	TB_C
MTBJ0J1EN /I	Data	185	JTAG_BSRINBOTH	
MTBTUGEN1	Data	186	JTAG_BSROUTBOTH	TB3Z_C
MTBTUGEN2	Data	187	JTAG_BSROUTBOTH	TB3Z_C
MTBTUGEN3	Data	188	JTAG_BSROUTBOTH	TB3Z_C
MTBPAYEN /O	Data	189	JTAG_BSROUTBOTH	TB_C
MTBPAYEN /I	Data	190	JTAG_BSRINBOTH	
MTBH4EN /O	Data	191	JTAG_BSROUTBOTH	TB_C
MTBH4EN /I	Data	192	JTAG_BSRINBOTH	
MMFRMI	Data	193	JTAG_BSRINBOTH	
DTBH4EN	Data	194	JTAG_BSROUTBOTH	TB3Z_C
DTBPAYEN	Data	195	JTAG_BSROUTBOTH	TB3Z_C
DTBTUGEN3	Data	196	JTAG_BSROUTBOTH	TB3Z_C
DTBTUGEN2	Data	197	JTAG_BSROUTBOTH	TB3Z_C
DTBTUGEN1	Data	198	JTAG_BSROUTBOTH	TB3Z_C
DTBJ0J1EN	Data	199	JTAG_BSROUTBOTH	TB3Z_C
DTBCK	Data	200	JTAG_BSROUTBOTH	TB3Z_C
DTBPAR	Data	201	JTAG_BSROUTBOTH	TB3Z_C
DTBDATA [0]	Data	202	JTAG_BSROUTBOTH	TB3Z_C
DTBDATA [1]	Data	203	JTAG_BSROUTBOTH	TB3Z_C
DTBDATA [2]	Data	204	JTAG_BSROUTBOTH	TB3Z_C
DTBDATA [3]	Data	205	JTAG_BSROUTBOTH	TB3Z_C
DTBDATA [4]	Data	206	JTAG_BSROUTBOTH	TB3Z_C
DTBDATA [5]	Data	207	JTAG_BSROUTBOTH	TB3Z_C
DTBDATA [6]	Data	208	JTAG_BSROUTBOTH	TB3Z_C
DTBDATA [7]	Data	209	JTAG_BSROUTBOTH	TB3Z_C

PACKAGE INFORMATION

The SXT6051 Overhead Terminator is packaged in a 208-pin QFP package. The package measures 28mm per side, plus 1.3mm pin lead length.

	Millimeters		
Dim	Min	Max	
A	-	4.10	
A1	0.25	-	
A2	3.20	3.60	
b	0.17	0.27	
D	30.60	BSC.	
D_1	28.00 BSC.		
Е	30.60 BSC.		
E_1	28.00 BSC.		
e	.50 BSC.		
L	0.50	0.75	
L_1	1.30 REF		
θ	0°	7°	
θ_2	5°	16°	
θ_3	5°	16°	

GLOSSARY OF TERMS

AIS Alarm Indication Signal

APS Automatic Protection Switching

AUG Administrative Unit Group
EED Excessive Error Defect
FIFO First in/First Out Memory
HPT High Order Path Termination

HPOH High Order Path OverHead

LOF Loss of Frame
LOP Loss of Pointer

MSA Multiplexer Section Adaptation

MSOH Multiplexer Section Overhead

MST Multiplexer Section Termination

NDF New Data Flag

NRZ Non-Return to Zero

OOF Out of Frame POH Path Overhead

RDI Remote Defect Indication
REI Remote Error Indication

RSOH Regenerator Section Overhead
SDH Synchronous Digital Hierarchy
SONET Synchronous Optical Network
SPE Synchronous Payload Envelope
STM Synchronous Transport Module

STM-RR Synchronous Transport Module for Radio Relay

STS Synchronous Transport Signal

TUG Tributary Unit Group VC Virtual Container

Table 31: Changes from previous version (Rev. 1.0) to current (Rev. 1.1)

Section	Page #	Change	Description
Pin Description	15	Modify	Move descriptions of pins 112 and 113 from Multiplexer/demultiplexer Protection Interface Section to External References section.
Functional Description	29	Delete	Sentence: "The 00 for each calculated B2 bit is different from the one received."
Functional Description	27	Modify	Modified Figure 8, STM-O Framing Acquisition

Notes

Corporate Headquarters

9750 Goethe Road Sacramento, California 95827 Telephone (916) 855-5000

Fax: (916) 854-1101 Web: www.level1.com

EUROPE

The Americas

International

EAST Eastern Area Headquarters & Western Area

Northeastern Regional Office 234 Littleton Road, Unit 1A Westford, MA 01886

Tel: (508) 692-1193 Fax: (508) 692-1244

Headquarters

3375 Scott Blvd., #338 Santa Clara, CA 95054 Tel: (408) 496-1950 Fax: (408) 496-1955

WEST

ASIA/PACIFIC

Asia / Pacific Area **Headquarters**

101 Thomson Road United Square #08-01 Singapore 307591 Tel: +65 353-6722

Fax: +65 353-6711

European Area

Headquarters

Parc Technopolis - Bat. Zeta 3, avenue du Canada -Z.A. de Courtaboeuf 91974 Les Ulis Cedex

France

Tel: +33 1 64 86 2828 Fax: +33 1 60 92 0608

North Central Regional Office

One Pierce Place Suite 500E Itasca, IL 60143 Tel: (630) 250-6044 Fax: (630) 250-6045

South Central Regional Office

2340 E. Trinity Mills Road Suite 306 Carrollton, TX 75006 Tel: (972) 418-2956

Fax: (972) 418-2985

Central Asia/Pacific **Regional Office**

Suite 305, 4F-3 75 Hsin Tai Wu Road, Sec. 1, Hsi-Chih, Taipei County, Taiwan R.O.C.

Tel: +886 22 698 2525 Fax: +886 22 698 3017

Northern Europe Regional Office

Torshamnsgatan 35 164/40 Kista/Stockholm, Sweden

Tel: +46 8 750 39 80 Fax: +46 8 750 39 82

Southeastern **Regional Office**

4020 West Chase Blvd. Raleigh, NC 27615 Tel: (305) 444-2966 Fax: (305) 444-4650

Southwestern **Regional Office**

28203 Cabot Road Suite 300 Laguna Niguel, CA 92677 Tel: (714) 365-5655

Fax: (714) 365-5653

Northern Asia/Pacific Regional Office

Nishi-Shinjuku, Mizuma **Building 8F** 3-3-13, Nishi-Shinjuku, Shinjuku-Ku Tokyo, 160 Japan Tel: +81 33 347-8630

Fax: +81 48 855-0470

Central and Southern **Europe Regional Office**

"Regus" Feringastrasse 6 D-85774 Muenchen-Unterfoerhring, Germany Tel: +49 89 99 216 375 Fax: +49 89 99 216 377

Latin/South **America**

9750 Goethe Road Sacramento, CA 95827 **USA**

Tel: (916) 855-5000 Fax: (916) 854-1102

Revision Date **Status** 1.0 02/98 Product Release 05/98 1.1 Corrected errors, see Table 31 for details

This product is covered by one or more of the following patents. Additional patents pending. 2002382-1; 5,008,637; 5,028,888; 5,057,794; 5,059,924; 5,068,628; 5,077,529; 5,084,866; 5,148,427; 5,153,875; 5,157,690; 5,159,291; 5,162,746; 5,166,635; 5,181,228; 5,204,880; 5,249,183; 5,257,286; 5,267,269; 5,267,746; 5,461,661; 5,493,243; 5,534,863; 5,574,726; 5,581,585; 5,608,341