To all our customers

Information regarding change of names mentioned within this document, to Renesas Technology Corp.

On April 1st 2003 the following semiconductor operations were transferred to Renesas Technology Corporation: operations covering microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.).

Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names are mentioned in the document, these names have all been changed to Renesas Technology Corporation.

Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Thank you for your understanding.

Renesas Technology Home Page: www.renesas.com

Renesas Technology Corp. April 1, 2003

(128 x 80-dot Graphics LCD Controller/Driver for 256 Colors)

HITACHI

Rev 0.5 July 4, 2000

Description

The HD66761, color-graphics LCD controller and driver LSI, displays 128-by-80-dot graphics for 256 STN colors. It consists of upper and lower screens and drives maximum 128-by-160-dot STN color LCDs. The HD66761's bit-operation functions and a 16-bit high-speed bus interface enable efficient data transfer and high-speed rewriting of data to the graphics RAM.

The HD66761 has various functions for reducing the power consumption of an LCD system, such as low-voltage operation of 2.2 V/min., a step-up circuit to generate a maximum of seven-times the LCD drive voltage from the supplied voltage, and voltage-followers to decrease the direct current flow in the LCD drive bleeder-resistors. Combining these hardware functions with software functions, such as a partial display with low-duty drive and standby and sleep modes, allows precise power control. The HD66761 is suitable for any mid-sized or small portable battery-driven product requiring long-term driving capabilities, such as digital cellular phones supporting a WWW browser, bidirectional pagers, and small PDAs.

Features

- 128×80 -dot graphics display LCD controller/driver for 256 STN colors
- Display mode change between 256 colors (8 bits per pixel) and four colors (2-bit per pixel)
- 16-/8-bit high-speed bus interface
- Bit-operation functions for graphics processing:
 - Write-data mask function in bit units
 - Swap function of upper and lower bytes
 - Logical operation in pixel unit and conditional write function
- Various color-display control functions:
 - 256 of the 4,096 possible colors can be displayed at the same time (grayscale palette incorporated)
 - Vertical scroll display function in raster-row units
 - Horizontal scroll display function in four-pixel units
 - Color window cursor display supported by hardware
- Low-power operation supports:
 - Vcc = 2.2 to 3.6 V (low voltage)
 - V_{LCD} (= V_{LPS} GND) = 5 to 15.5 V (liquid crystal drive voltage)

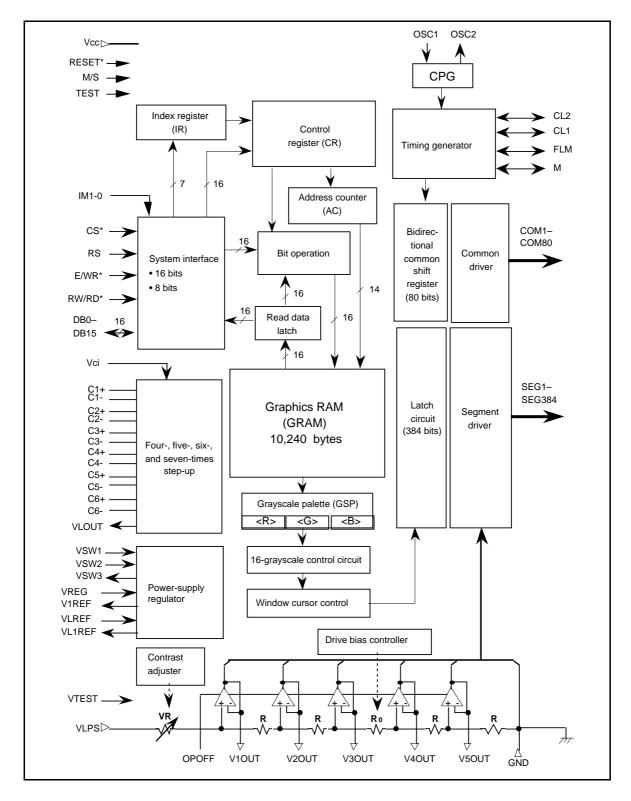
- Four-, five-, six-, or seven-times step-up circuit for liquid crystal drive voltage
- 128-step contrast adjuster and voltage followers to decrease direct current flow in the LCD drive bleeder-resistors
- Power-save functions such as the standby mode and sleep mode
- Partial LCD drive of two screens in any position
- Programmable drive duty ratios (1/16–1/80) and bias values (1/5–1/10) displayed on LCD
- Parallel operation for two vertical screens (up to maximum 128-by-160-dot display)
- Internal RAM capacity: 10,240 bytes
- 384-segment × 80-common liquid crystal display driver
- n-raster-row AC liquid-crystal drive (C-pattern waveform drive)
- Internal oscillation and hardware reset
- Shift change of segment and common drivers

<Target values>

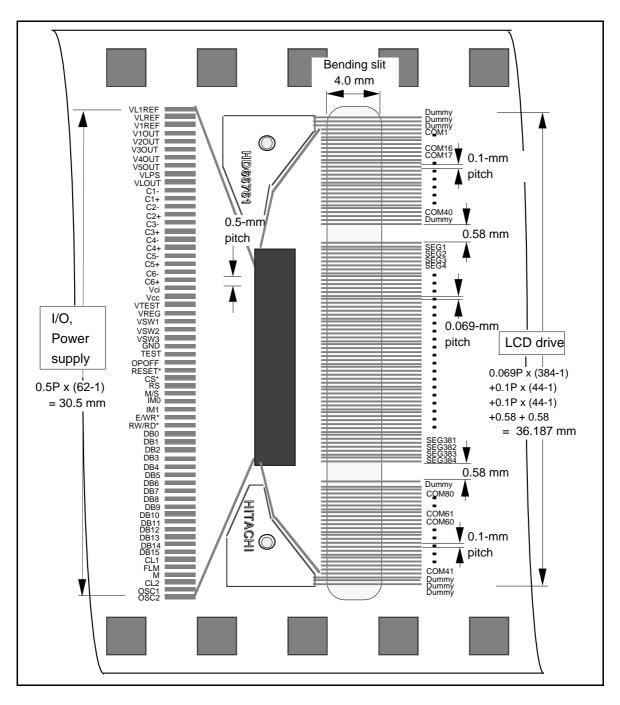
Total Current Consumption Characteristics (Vcc = 2.5 V, TYP Conditions, LCD Drive Power Current Included)

				Total Pow	er Consum	ption		
				Normal Di	splay Opera	ation		
Character Display Dot Size	Duty Ratio	R-C Oscillation Frequency	Frame Frequency	Internal Logic	LCD Power	 Total*	Sleep Mode	Standby Mode
128 x 16 dots	1/16	180 kHz	70 Hz	(35 µA)	(25 µA)	Four-times (135 μA)	(15 µA)	0.1 µA
128 x 24 dots	1/24	180 kHz	70 Hz	(40 µA)	(25 µA)	Four-times (140 μA)	(15 µA)	-
128 x 56 dots	1/56	180 kHz	70 Hz	(85 µA)	(25 µA)	Five-times (210 µA)	(15 µA)	-
128 x 64 dots	1/64	180 kHz	70 Hz	(90 µA)	(25 µA)	Five-times (220 µA)	(15 µA)	-
128 x 72 dots	1/72	180 kHz	70 Hz	(95 µA)	(25 µA)	Six-times (245 µA)	(15 µA)	-
128 x 80 dots	1/80	180 kHz	70 Hz	(100 µA)	(25 µA)	Six-times (250 µA)	(15 µA)	

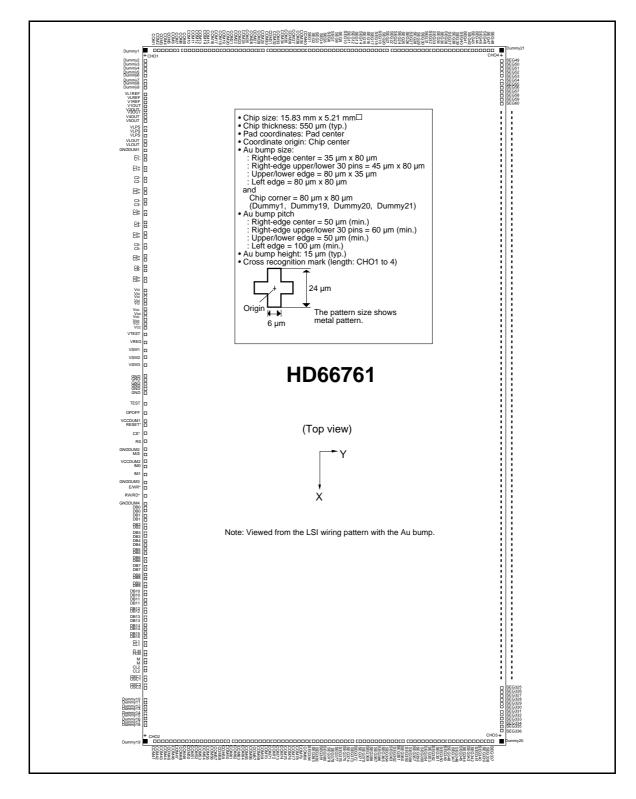
Note: When a four-, five-, six-, or seven-times step-up is used:


the total power consumption = internal logic current + LCD power current x 4 (four-times step-up), the total power consumption = internal logic current + LCD power current x 5 (five-times step-up), the total power consumption = internal logic current + LCD power current x 6 (six-times step-up), and

the total power consumption = internal logic current + LCD power current x 7 (seven-times step-up)


Type Name

Types	External Dimensions	COM Driver Arrangement	Display
HD66761TB0	Bending TCP	Both sides of COM (Output from both sides of the chip)	256 RGB colors
HCD66761BP	Au-bump chip	-	


HD66761 Block Diagram

TCP Dimensions (HD66761TB0)

Pad Arrangement

HD66761 Pad Coordinate

11D00/01																	
No. Pad Name	X (オm)	Y (才m)	No. Pad Name	X (1m)	(オm) Y (オ	No. Pad Name	X (オm) Y (オm)	No. Pad Name	X (オm) Y (オm)	No. Pad Name	X (オm) Y (オm)	No. Pad Name	X (オm) Y (オm)	No. Pad Name	X (オm) Y (オm)	No. Pad Name	X (オm) Y (オm)
1 DUMMY1	-7721	-2411	77 M/S	1237		153 COM55			7418 2411				-475 2411	457 SEG107	-4278 2411		
							7721 -1530	229 SEG335		305 SEG259		381 SEG183				533 SEG32	
2 DUMMY2	-7520	-2411	78 VCCDUM2	1337	-2411	154 COM56	7721 -1480	230 SEG334	7358 2411	306 SEG258	3278 2411	382 SEG182	-525 2411	458 SEG106	-4328 2411	534 SEG31	-7721 1272
3 DUMMY3	-7420	-2411	79 IM0	1437	-2411	155 COM57	7721 -1430	231 SEG333	7298 2411	307 SEG257	3228 2411	383 SEG181	-575 2411	459 SEG105	-4379 2411	535 SEG30	-7721 1222
4 DUMMY4	-7320	-2411	80 IM1	1637	-2411	156 COM58	7721 -1380	232 SEG332	7238 2411	308 SEG256	3178 2411	384 SEG180	-626 2411	460 SEG104	-4429 2411	536 SEG29	-7721 1172
5 DUMMY5	-7220	-2411	81 GNDDUM3	1737	-2411	157 COM59	7721 -1330	233 SEG331	7178 2411	309 SEG255	3128 2411	385 SEG179	-676 2411	461 SEG103	-4479 2411	537 SEG28	-7721 1122
6 DUMMY6	-7120	-2411	82 EWR'	1837		158 COM60	7721 -1280	234 SEG330	7117 2411	310 SEG254	3077 2411	386 SEG178	-726 2411	462 SEG102	-4529 2411	538 SEG27	-7721 1072
7 DUMMY7	-7020	-2411	83 RW/RD'	2037	-2411	159 COM61	7721 -1230	235 SEG329	7057 2411	311 SEG253	3027 2411	387 SEG177	-776 2411	463 SEG101	-4579 2411	539 SEG26	-7721 1022
8 DUMMY8	-6920	-2411	84 GNDDUM4	2137	-2411	160 COM62	7721 -1180	236 SEG328	6997 2411	312 SEG252	2977 2411	388 SEG176	-826 2411	464 SEG100	-4629 2411	540 SEG25	-7721 972
9 DUMMY9	-6820	-2411	85 DB0	2237	-2411	161 COM63	7721 -1130	237 SEG327	6937 2411	313 SEG251	2927 2411	389 SEG175	-876 2411	465 SEG99	-4679 2411	541 SEG24	-7721 922
10 VL1REF	-6620	-2411	86 DB0	2337	-2411	162 COM64	7721 -1080	238 SEG326	6877 2411	314 SEG250	2877 2411	390 SEG174	-926 2411	466 SEG98	-4729 2411	542 SEG23	-7721 872
11 VLREF	-6520	-2411	87 DB1	2437	-2411	163 COM65	7721 -1030	239 SEG325	6817 2411	315 SEG249	2827 2411	391 SEG173	-976 2411	467 SEG97	-4779 2411	543 SEG22	-7721 822
TIVEREF																343 3E022	
12 V1REF	-6420	-2411	88 DB1	2538	-2411	164 COM66	7721 -980	240 SEG324	6757 2411	316 SEG248	2777 2411	392 SEG172	-1026 2411	468 SEG96	-4829 2411	544 SEG21	-7721 772
13 V10UT	-6320	-2411	89 DB2	2638	-2411	165 COM67	7721 -930	241 SEG323	6697 2411	317 SEG247	2727 2411	393 SEG171	-1076 2411	469 SEG95	-4879 2411	545 SEG20	-7721 722
14 V2OUT	-6219	-2411	90 DB2	2738	-2411	166 COM68	7721 -880	242 SEG322	6636 2411	318 SEG246	2677 2411	394 SEG170	-1126 2411	470 SEG94	-4929 2411	546 SEG19	-7721 672
15 V3OUT	-6119	-2411	91 DB3	2838	-2411	167 COM69	7721 -830	243 SEG321	6576 2411	319 SEG245	2627 2411	395 SEG169	-1176 2411	471 SEG93	-4979 2411	547 SEG18	-7721 622
16 V4OUT	-6019	-2411	92 DB3	2938		168 COM70	7721 -779	244 SEG320	6516 2411	320 SEG244	2577 2411	396 SEG168	-1226 2411	472 SEG92	-5029 2411	548 SEG17	-7721 572
										320 3EG244						346 3EG17	
17 V5OUT	-5919	-2411	93 DB4	3038	-2411	169 COM71	7721 -729	245 SEG319	6456 2411	321 SEG243	2527 2411	397 SEG167	-1276 2411	473 SEG91	-5079 2411	549 SEG16	-7721 522
18 VLPS	-5769	-2411	94 DB4	3138	-2411	170 COM72	7721 -679	246 SEG318	6396 2411	322 SEG242	2477 2411	398 SEG166	-1326 2411	474 SEG90	-5129 2411	550 SEG15	-7721 472
						171 COM73											
19 VLPS	-5669	-2411	95 DB5	3238	-2411		7721 -629	247 SEG317	6336 2411	323 SEG241	2427 2411	399 SEG165	-1376 2411		-5179 2411	551 SEG14	-7721 421
20 VLPS	-5569	-2411	96 DB5	3338	-2411	172 COM74	7721 -579	248 SEG316	6276 2411	324 SEG240	2377 2411	400 SEG164	-1426 2411	476 SEG88	-5229 2411	552 SEG13	-7721 371
21 VLOUT	-5419	-2411	97 DB6	3438	-2411	173 COM75	7721 -529	249 SEG315	6216 2411	325 SEG239	2327 2411	401 SEG163	-1476 2411	477 SEG87	-5279 2411	553 SEG12	-7721 321
21 12001			37 000											411 02001			
22 VLOUT	-5319	-2411	98 DB6	3538		174 COM76	7721 -479	250 SEG314	6155 2411	326 SEG238	2277 2411	402 SEG162	-1526 2411	478 SEG86	-5329 2411	554 SEG11	-7721 271
23 GNDDUM1	-5169	-2411	99 DB7	3638	-2411	175 COM77	7721 -429	251 SEG313	6095 2411	327 SEG237	2227 2411	403 SEG161	-1576 2411	479 SEG85	-5379 2411	555 SEG10	-7721 221
24 CAP1-	-5069	-2411	100 DB7	3739	-2411	176 COM78	7721 -379	252 SEG312	6035 2411	328 SEG236	2177 2411	404 SEG160	-1626 2411	480 SEG84	-5429 2411	556 SEG9	-7721 171
25 CAP1-	-4968	-2411	101 DB8	3839	-2411	177 COM79	7721 -329	253 SEG311	5975 2411	329 SEG235	2127 2411	405 SEG159	-1676 2411	481 SEG83	-5479 2411	557 SEG8	-7721 121
26 CAP1+	-4868	-2411	102 DB8	3939		178 COM80	7721 -279	254 SEG310	5915 2411	330 SEG234	2077 2411	406 SEG158	-1726 2411	482 SEG82	-5529 2411	558 SEG7	-7721 71
20 OAD4																550 000	
27 CAP1+	-4768	-2411	103 DB9	4039		179 SEG384	7721 -229	255 SEG309	5855 2411	331 SEG233	2027 2411	407 SEG157	-1776 2411	483 SEG81	-5579 2411	559 SEG6	-7721 21
28 CAP2-	-4668	-2411	104 DB9	4139	-2411	180 SEG383	7721 -179	256 SEG308	5795 2411	332 SEG232	1977 2411	408 SEG156	-1826 2411	484 SEG80	-5630 2411	560 SEG5	-7721 -29
29 CAP2-	-4568	-2411	105 DB10	4239	-2411	181 SEG382	7721 -129	257 SEG307	5735 2411	333 SEG231	1927 2411	409 SEG155	-1877 2411	485 SEG79	-5680 2411	561 SEG4	-7721 -79
30 CAP2+	-4468	-2411	106 DB10	4339	-2411	182 SEG381	7721 -79	258 SEG306	5680 2411	334 SEG230	1877 2411	410 SEG154	-1927 2411	486 SEG78	-5735 2411	562 SEG3	-7721 -129
31 CAP2+	-4368	-2411	107 DB11	4439	-2411	183 SEG380	7721 -29	259 SEG305	5630 2411	335 SEG229	1826 2411	411 SEG153	-1977 2411	487 SEG77	-5795 2411	563 SEG2	-7721 -179
												111 020100					
32 CAP3-	-4268	-2411	108 DB11	4539	-2411	184 SEG379	7721 21	260 SEG304	5579 2411	336 SEG228	1776 2411	412 SEG152	-2027 2411	488 SEG76	-5855 2411	564 SEG1	-7721 -229
33 CAP3-	-4168	-2411	109 DB12	4639	-2411	185 SEG378	7721 71	261 SEG303	5529 2411	337 SEG227	1726 2411	413 SEG151	-2077 2411	489 SEG75	-5915 2411	565 COM40	-7721 -279
34 CAP3+	-4068	-2411	110 DB12	4739		186 SEG377	7721 121	262 SEG302	5479 2411	338 SEG226	1676 2411	414 SEG150	-2127 2411	490 SEG74	-5975 2411	566 COM39	-7721 -329
35 CAP3+	-3968	-2411	111 DB13	4839	-2411	187 SEG376	7721 171	263 SEG301	5429 2411	339 SEG225	1626 2411	415 SEG149	-2177 2411	491 SEG73	-6035 2411	567 COM38	-7721 -379
36 CAP4-	-3868	-2411	112 DB13	4939	-2411	188 SEG375	7721 221	264 SEG300	5379 2411	340 SEG224	1576 2411	416 SEG148	-2227 2411	492 SEG72	-6095 2411	568 COM37	-7721 -429
37 CAP4-	-3767	-2411	113 DB14	5040		189 SEG374	7721 271	265 SEG299	5329 2411	341 SEG223	1526 2411	417 SEG147	-2277 2411	493 SEG71	-6155 2411	569 COM36	-7721 -479
38 CAP4+	-3667	-2411	114 DB14	5140	-2411	190 SEG373	7721 321	266 SEG298	5279 2411	342 SEG222	1476 2411	418 SEG146	-2327 2411	494 SEG70	-6216 2411	570 COM35	-7721 -529
39 CAP4+	-3567	-2411	115 DB15	5240	-2411	191 SEG372	7721 371	267 SEG297	5229 2411	343 SEG221	1426 2411	419 SEG145	-2377 2411	495 SEG69	-6276 2411	571 COM34	-7721 -579
40 CAP5-	-3467	-2411	116 DB15	5340	-2411	192 SEG371	7721 421	268 SEG296	5179 2411	344 SEG220	1376 2411	420 SEG144	-2427 2411	496 SEG68	-6336 2411	572 COM33	-7721 -629
41 CAP5-	-3367	-2411	117 CL1	5440	-2411	193 SEG370	7721 472	269 SEG295	5129 2411	345 SEG219	1326 2411	421 SEG143	-2477 2411	497 SEG67	-6396 2411	573 COM32	-7721 -679
42 CAP5+	-3267	-2411	118 CL1	5540	-2411	194 SEG369	7721 522	270 SEG294	5079 2411	346 SEG218	1276 2411	422 SEG142	-2527 2411	498 SEG66	-6456 2411	574 COM31	-7721 -729
43 CAP5+	-3167	-2411	119 FLM	5640	-2411	195 SEG368	7721 572	271 SEG293	5029 2411	347 SEG217	1226 2411	423 SEG141	-2577 2411	499 SEG65	-6516 2411	575 COM30	-7721 -779
44 CAP6-	-3067	-2411	120 FLM	5740		196 SEG367	7721 622	272 SEG292	4979 2411	348 SEG216	1176 2411	424 SEG140	-2627 2411	500 SEG64	-6576 2411	576 COM29	-7721 -830
								212 360292									
45 CAP6-	-2967	-2411	121 M	5840	-2411	197 SEG366	7721 672	273 SEG291	4929 2411	349 SEG215	1126 2411	425 SEG139	-2677 2411	501 SEG63	-6636 2411	577 COM28	-7721 -880
46 CAP6+	-2867	-2411	122 M	5940	-2411	198 SEG365	7721 722	274 SEG290	4879 2411	350 SEG214	1076 2411	426 SEG138	-2727 2411	502 SEG62	-6697 2411	578 COM27	-7721 -930
47 CAP6+	-2767	-2411	123 CL2	6040		199 SEG364	7721 772	275 SEG289	4829 2411	351 SEG213	1026 2411	427 SEG137	-2777 2411	503 SEG61	-6757 2411	579 COM26	-7721 -980
48 Vci	-2617	-2411	124 CL2	6140	-2411	200 SEG363	7721 822	276 SEG288	4779 2411	352 SEG212	976 2411	428 SEG136	-2827 2411	504 SEG60	-6817 2411	580 COM25	-7721 -1030
49 Vci	-2516	-2411	125 OSC1	6241		201 SEG362	7721 872	277 SEG287	4729 2411	353 SEG211	926 2411	429 SEG135	-2877 2411	505 SEG59	-6877 2411	581 COM24	-7721 -1080
50 Vci	-2416	-2411	126 OSC1	6341	-2411	202 SEG361	7721 922	278 SEG286	4679 2411	354 SEG210	876 2411	430 SEG134	-2927 2411	506 SEG58	-6937 2411	582 COM23	-7721 -1130
51 Vci	-2316	-2411	127 OSC2	6441	-2411	203 SEG360	7721 972	279 SEG285	4629 2411	355 SEG209	826 2411	431 SEG133	-2977 2411	507 SEG57	-6997 2411	583 COM22	-7721 -1180
52 Vci	-2216	-2411	128 OSC2	6541	-2411	204 SEG359	7721 1022	280 SEG284	4579 2411	356 SEG208	776 2411	432 SEG132	-3027 2411	508 SEG56	-7057 2411	584 COM21	-7721 -1230
53 Vcc	-2027	-2411	129 DUMMY10	6641	-2411	205 SEG358	7721 1072	281 SEG283	4529 2411	357 SEG207	726 2411	433 SEG131	-3077 2411	509 SEG55		585 COM20	-7721 -1280
54 Vcc	-1927	-2411	130 DUMMY11	6780	-2411	206 SEG357	7721 1122	282 SEG282	4479 2411	358 SEG206	676 2411	434 SEG130	-3128 2411	510 SEG54	-7178 2411	586 COM19	-7721 -1330
55 Vcc	-1827	-2411	131 DUMMY12	6920	-2411	207 SEG356	7721 1172	283 SEG281	4429 2411	359 SEG205	626 2411	435 SEG129	-3178 2411	511 SEG53	-7238 2411	587 COM18	-7721 -1380
56 Vcc	-1727	-2411	132 DUMMY13	7020		208 SEG355	7721 1222	284 SEG280	4379 2411	360 SEG204	575 2411	436 SEG128	-3228 2411	512 SEG52	-7298 2411	588 COM17	-7721 -1430
57 Vcc	-1627	-2411	133 DUMMY14	7120	-2411	209 SEG354	7721 1272	285 SEG279	4328 2411	361 SEG203	525 2411	437 SEG127	-3278 2411	513 SEG51	-7358 2411	589 COM16	-7721 -1480
58 Vcc	-1527	-2411	134 DUMMY15	7220		210 SEG353	7721 1322	286 SEG278	4278 2411	362 SEG202	475 2411	438 SEG126	-3328 2411	514 SEG50	-7418 2411	590 COM15	-7721 -1530
59 VTEST	-1327	-2411	135 DUMMY16	7320		211 SEG352	7721 1372	287 SEG277	4228 2411	363 SEG201	425 2411	439 SEG125	-3378 2411	515 SEG49	-7478 2411	591 COM14	-7721 -1580
60 VREG	-1127	-2411	136 DUMMY17	7420	-2411	212 SEG351	7721 1422	288 SEG276	4178 2411	364 SEG200	375 2411	440 SEG124	-3428 2411	516 DUMMY21	-7721 2411	592 COM13	-7721 -1630
61 VSW1	-926	-2411	137 DUMMY18	7520		213 SEG350	7721 1472	289 SEG275	4128 2411	365 SEG199	325 2411	441 SEG123	-3478 2411	517 SEG48	-7721 2123	593 COM12	-7721 -1680
62 VSW2	-726	-2411	138 DUMMY19	7721	-2411	214 SEG349	7721 1522	290 SEG274	4078 2411	366 SEG198	275 2411	442 SEG122	-3528 2411	518 SEG47	-7721 2073	594 COM11	-7721 -1730
63 VSW3	-526	-2411	139 COM41	7721	-2231	215 SEG348	7721 1572	291 SEG273	4028 2411	367 SEG197	225 2411	443 SEG121	-3578 2411	519 SEG46	-7721 2023	595 COM10	-7721 -1780
64 GND	-395	-2411	140 COM42	7721	-2181	216 SEG347	7721 1622	292 SEG272	3978 2411	368 SEG196	175 2411	444 SEG120	-3628 2411	520 SEG45	-7721 1973	596 COM9	-7721 -1830
65 GND	-295	-2411	141 COM43	7721	-2131	217 SEG346	7721 1672	293 SEG271	3928 2411	369 SEG195	125 2411	445 SEG119	-3678 2411	521 SEG44	-7721 1923	597 COM8	-7721 -1880
	-195	-2411															
66 GND			142 COM44	7721		218 SEG345	7721 1723	294 SEG270	3878 2411	370 SEG194		446 SEG118		522 SEG43	-7721 1873	598 COM7	-7721 -1930
67 GND	-95	-2411	143 COM45	7721	-2030	219 SEG344	7721 1773	295 SEG269	3828 2411	371 SEG193	25 2411	447 SEG117	-3778 2411	523 SEG42	-7721 1823	599 COM6	-7721 -1980
68 GND	F	-2411	144 COM46	7721	-1980	220 SEG343	7721 1823	296 SEG268	3778 2411	372 SEG192	-25 2411	448 SEG116	-3828 2411	524 SEG41	-7721 1773	600 COM5	-7721 -2030
69 GND	105	-2411	145 COM47	7721		221 SEG342	7721 1873	297 SEG267	3728 2411	373 SEG191	-75 2411	449 SEG115	-3878 2411	525 SEG40	-7721 1723	601 COM4	-7721 -2081
70 TEST	236	-2411	146 COM48	7721		222 SEG341	7721 1923	298 SEG266	3678 2411	374 SEG190	-125 2411	450 SEG114	-3928 2411	526 SEG39	-7721 1672	602 COM3	-7721 -2131
71 OPOFF	433	-2411	147 COM49	7721	-1830	223 SEG340	7721 1973	299 SEG265	3628 2411	375 SEG189	-175 2411	451 SEG113	-3978 2411	527 SEG38	-7721 1622	603 COM2	-7721 -2181
72 VCCDUM1	536	-2411	148 COM50	7721	-1780	224 SEG339	7721 2023	300 SEG264	3578 2411	376 SEG188	-225 2411	452 SEG112	-4028 2411	528 SEG37	-7721 1572	604 COM1	-7721 -2231
73 RESET	636	-2411	149 COM51	7721	-1730	225 SEG338	7721 2073	301 SEG263	3528 2411	377 SEG187	-275 2411	453 SEG111	-4078 2411	529 SEG36	-7721 1522	Length 1 (CHO1)	-7619 -2411
74 CS	836	-2411	150 COM52	7721	-1680	226 SEG337	7721 2123	302 SEG262	3478 2411	378 SEG186	-325 2411	454 SEG110	-4128 2411	530 SEG35	-7721 1472	Length 2 (CHO2)	7619 -2411
75 RS	1036	-2411	151 COM53	7721	-1630	227 DUMMY20	7721 2411	303 SEG261	3428 2411	379 SEG185	-375 2411	455 SEG109	-4178 2411	531 SEG34	-7721 1422	Length 3 (CHO3)	7619 2411
76 GNDDUM2	4400	0444	152 COM54	7721	4500	000 050000		304 SEG260	0070 0111	380 SEG184		456 SEG108	-4228 2411	500 05000	7704 4070		-7619 2411
70 GNDDUM2	1136	-2411	152 UUM54	1/21	-1580	220 SEG336	7478 2411	30413EG260	33/0 2411	3001SEG184	-425 2411	400 SEG108	-4220 2411	032 SEG33	-1121 1372	Length 4 (CHO4)	-/019 2411

Pin Functions

Signals	Number of Pins	I/O	Connected to	Functions
IM1, IM0	2	I	GND or V_{cc}	Selects the MPU interface mode:
				IM1 IM0 MPU interface mode
				GND GND 68-system 16-bit bus interface
				GND Vcc 68-system 8-bit bus interface
				Vcc GND 80-system 16-bit bus interface
				Vcc Vcc 80-system 8-bit bus interface
CS*	1	I	MPU	Selects the HD66761: Low: HD66761 is selected and can be accessed High: HD66761 is not selected and cannot be accessed Must be fixed at GND level when not in use.
RS	1	I	MPU	Selects the register. Low: Index/status High: Control
E/WR*	1	I	MPU	For a 68-system bus interface, serves as an enable signal to activate data read/write operation. For an 80-system bus interface, serves as a write strobe signal and writes data at the low level.
RW/RD*	1	I	MPU	For a 68-system bus interface, serves as a signal to select data read/write operation. Low: Write High: Read For an 80-system bus interface, serves as a read strobe signal and reads data at the low level.
DB0-DB15	16	I/O	MPU	Serves as a 16-bit bidirectional data bus. For an 8-bit bus interface, data transfer uses DB15- DB8; fix unused DB7-DB0 to the Vcc or GND level.
COM1–COM 80	80	0	LCD	Output signals for common drive: All the unused pins output unselected waveforms. In the display-off period (D1–0 = 00, 01), sleep mode (SLP = 1), or standby mode (STB = 1), all pins output GND level. The CMS bit can change the shift direction of the common signal. For example, if CMS = 0, COM1 shifts to COM80. If CMS = 1, COM80 shifts to COM1. Note that the start position of the common output is shifted by screen-division driving.
SEG1–SEG 384	384	0	LCD	Output signals for segment drive. In the display-off period (D1–0 = 00, 01), sleep mode (SLP = 1), or standby mode (STB = 1), all pins output GND level. The SGS bit can change the shift direction of the segment signal. For example, if SGS = 0, RAM address 0000 is output from SEG1. If SGS = 1, it is output from SEG384. SEG1, SEG4, SEG7, display red (R), SEG2, SEG5, SEG8, display green (G), and SEG3, SEG6, SEG9, display blue (B) (SGS = 0).

Table 1Pin Functional Description

Table 1 Pin Functional Description (cont)

Signals	Number of Pins	I/O	Connected to	Functions
V1OUT–V5 OUT	5	I/O	Capacitor or master/slave	Used for output from the internal operational amplifiers when they are used (OPOFF = GND); attach a capacitor to stabilize the output. When the amplifiers are not used (OPOFF = V_{cc}), V1 to V5 voltages can be supplied to these pins from the master side. Adjust the contrast for V1OUT $\ge V_{cc}$, V_{ci} .
V_{LPS}	1	—	Power supply	Power supply for LCD drive. V_{LCD} (= V_{LPS} – GND) = 15.5 V max.
V_{cc} , GND	2	—	Power supply	V_{cc} : +2.2 V to + 3.6 V; GND (logic): 0 V
OSC1, OSC2	2	l or O	Oscillation- resistor (master)	In the master mode, connect an external resistor for R-C oscillation. In the slave mode, fix OSC1 to GND and open OSC2.
Vci	1	I	Power supply	Inputs a reference voltage and supplies power to the step-up circuit; generates the liquid crystal display drive voltage from the operating voltage. The step-up output voltage must not be larger than the absolute maximum ratings. Must be left disconnected when the step-up circuit is not used.
VLOUT	1	0	V _{LPS} pin/step-up capacitance	Potential difference between Vci and GND is four- to seven-times-stepped up and then output. Magnitude of step-up is selected by instruction.
C1+, C1–	2	_	Step-up capacitance	External capacitance should be connected here for step-up.
C2+, C2–	2	_	Step-up capacitance	External capacitance should be connected here for step-up.
C3+, C3–	2	_	Step-up capacitance	External capacitance should be connected here for step-up.
C4+, C4–	2	_	Step-up capacitance	External capacitance should be connected here for step-up.
C5+, C5–	2	—	Step-up capacitance	External capacitance should be connected here for step-up.
C6+, C6–	2	—	Step-up capacitance	External capacitance should be connected here for step-up.
CL2	1	I/O	Master/slave	In the master mode, the operating clock for slave is output. In the slave mode, the operating clock is input.
CL1	1	I/O	Master/slave	In the master mode, the one-raster-row-cycle pulse is output. In the slave mode, the one-raster-row-cycle pulse is input.
М	1	I/O	Master/slave	In the master mode, the AC-cycle signal is output. In the slave mode, the AC-cycle signal is input.
FLM	1	I/O	Master/slave	In the master mode, the frame-start pulse is output. In the slave mode, the frame-start pulse is input.

			·····	
Signals	Number of Pins	I/O	Connected to	Functions
M/S	1	I	Vcc or GND	Enters the master mode in V_{cc} level, and the slave mode in GND level. When one M/S is used, be sure to set the master mode.
RESET*	1	Ι	MPU or external R-C circuit	Reset pin. Initializes the LSI when low. Must be reset after power-on.
OPOFF	1	I	V_{cc} or GND	Turns the internal operational amplifier off when OPOFF = V_{cc} , and turns it on when OPOFF = GND. In the slave mode, turn off the amplifier and supply V1 to V5 on the master side to the V1OUT to V5OUT pins.
VSW1, VSW2	2	Ι	GND	Test pins. Must be VSW1, VSW2 = GND, and VSW3 = open.
VSW3	1	0	_	_
VREG	1	I	Input pin	This pin is used when the reference voltage of the internal power-supply regulator is externally supplied. When the internal reference voltage (1/2 Vci) is used, VREG must be opened since the 1/2-Vci level is output.
VLREF	1	I	Input pin	Use this pin when the LCD drive voltage is externally supplied. When the internal power-supply regulator is used, short VLREF with the V1REF pin.
V1REF	1	0	Output pin	Outputs the LCD drive voltage generated in the internal power-supply regulator. Insert this pin when the external temperature-compensation circuit is used between V1REF and VLREF. If the circuit is not used, short V1REF and VLREF.
VccDUM	2	0	Input pins	Outputs the internal $V_{\rm CC}$ level; shorting this pin sets the adjacent input pin to the $V_{\rm CC}$ level.
GNDDUM	4	0	Input pins	Outputs the internal GND level; shorting this pin sets the adjacent input pin to the GND level.
Dummy	4	_	_	Dummy pad. Must be left disconnected.
TEST	1	I	GND	Test pin. Must be fixed at GND level.
VTEST	1	_		Test pin. Must be left disconnected.
VL1REF	1	0		Test pin. Must be left disconnected.

Table 1 Pin Functional Description (cont)

Block Function Description

System Interface

The HD66761 has four high-speed system interfaces: an 80-system 16-bit/8-bit bus and a 68-system 16-bit/8-bit bus. The interface mode is selected by the IM1-0 pins.

The HD66761 has three 16-bit registers: an index register (IR), a write data register (WDR), and a read data register (RDR). The IR stores index information from the control registers and the GRAM. The WDR temporarily stores data to be written into control registers and the GRAM, and the RDR temporarily stores data read from the GRAM. Data written into the GRAM from the MPU is first written into the WDR and then is automatically written into the GRAM by internal operation. Data is read through the RDR when reading from the GRAM, and the first read data is invalid and the second and the following data are normal. When a logic operation is performed inside of the HD66761 by using the display data set in the GRAM and the data written from the MPU, the data read through the RDR is used. Accordingly, the MPU does not need to read data twice nor to fetch the read data into the MPU. This enables high-speed processing.

Execution time for instruction excluding oscillation start is 0 clock cycle and instructions can be written in succession.

80-series	Bus	68-series Bus		
WR Bits	RD Bits	R/W Bits	RS Bits	Operations
0	1	0	0	Writes indexes into IR
1	0	1	0	Reads internal status
0	1	0	1	Writes into control registers and GRAM through WDR
1	0	1	1	Reads from GRAM through RDR

Table 2Register Selection

Bit Operation

The HD66761 supports the following functions: a swap function that writes the data written from the MPU into the GRAM by reversing the display position vertically in byte units, a write data mask function that selects and writes data into the GRAM in bit units, and a logic operation function that performs logic operations or conditional determination on the display data set in the GRAM and writes into the GRAM. With the 16-bit bus interface, these functions can greatly reduce the processing loads of the MPU graphics software and can rewrite the display data in the GRAM at high speed. For details, see the Graphics Operation Function section.

Address Counter (AC)

The address counter (AC) assigns addresses to the GRAM. When an address set instruction is written into the IR, the address information is sent from the IR to the AC.

After writing into the GRAM, the AC is automatically incremented by 1 (or decremented by 1). After reading from the data, the AC is not updated.

Graphics RAM (GRAM)

The graphics RAM (GRAM) has eight bits/pixel and stores the bit-pattern data of 128 x 80 bytes.

Grayscale Palette (GSP)

The grayscale palette (GSP) is a palette table that converts the information (three bits for each color: two bits for B) read from the GRAM to 4-bit grayscale data. Any 256 of the 4,096 possible colors can be displayed at the same time. For details, see the Grayscale Palette section.

Grayscale Control Circuit

The grayscale control circuit performs 16-grayscale control with the frame rate control (FRC) method for grayscale display for each color. For details, see the Grayscale Palette section.

Timing Generator

The timing generator generates timing signals for the operation of internal circuits such as the GRAM. The RAM read timing for display and internal operation timing by MPU access are generated separately to avoid interference with one another. The timing generator generates the master-slave interface signals (M, FLM, CL1, and CL2) at master/slave operation.

Oscillation Circuit (OSC)

The HD66761 can provide R-C oscillation simply through the addition of an external oscillation-resistor between the OSC1 and OSC2 pins. The appropriate oscillation frequency for operating voltage, display size, and frame frequency can be obtained by adjusting the external-resistor value. Clock pulses can also be supplied externally. Since R-C oscillation stops during the standby mode, current consumption can be reduced. For details, see the Oscillation Circuit section.

Liquid Crystal Display Driver Circuit

The liquid crystal display driver circuit consists of 80 common signal drivers (COM1 to COM80) and 384 segment signal drivers (SEG1 to SEG384). When the number of lines are selected by a program, the required common signal drivers automatically output drive waveforms, while the other common signal drivers continue to output unselected waveforms.

Display pattern data is latched when 384-bit data has arrived. The latched data then enables the segment signal drivers to generate drive waveform outputs. The shift direction of 384-bit data can be changed by the SGS bit. The shift direction for the common driver can also be changed by the CMS bit by selecting an appropriate direction for the device mounting configuration.

When multiplexing drive is not used, or during the standby or sleep mode, all the above common and segment signal drivers output the GND level, halting the display.

Step-up Circuit (DC-DC Converter)

The step-up generates four-, five-, six-, or seven-times voltage input to the Vci pin. With this, both the internal logic units and LCD drivers can be controlled with a single power supply. Step-up output level from four-times to seven-times step-up can be selected by software. For details, see the Power Supply for Liquid Crystal Display Drive section.

V-Pin Voltage Follower

A voltage follower for each voltage level (V1 to V5) reduces current consumption by the LCD drive power supply circuit. No external resistors are required because of the internal bleeder-resistor, which generates different levels of LCD drive voltage. This internal bleeder-resistor can be software-specified from 1/5 bias to 1/10 bias, according to the liquid crystal display drive duty value. For details, see the Power Supply for Liquid Crystal Display Drive section.

Contrast Adjuster

The contrast adjuster can be used to adjust LCD contrast in 128 steps by varying the LCD drive voltage by software. This can be used to select an appropriate LCD brightness or to compensate for temperature.

Power-supply Regulator

The power-supply regulator generates the LCD drive voltage from the reference voltage, which does not depend on the LCD load current. The fluctuating LCD drive voltage can be controlled for the fluctuating LCD load current. For details, see the Liquid Crystal Display Voltage Generator section.

GRAM Address Map (HD66761)

						-						_		in muure.	Ì	` 		<i></i>			<u></u>							
SEG/C	OM Pin	SEG1	0010	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8	SEG9	SEG10	SEG11	SEG12			SEG3/3	SEG374	SEG375	SEG376	SEG377	SEG378	SEG379	SEG380	SEG381	SEG382		SEG383	SEG384
CMS=0	CMS=1	DB 15		DE	B DB		DB	DB 15		DB	DE	3	DE		[DB _ 15		DB 8	DB 7		DB	DB 15			B D	В		DB 0
COM1	COM80			"00	00"	-		10	'	00	01"	Н	Ū		•	10			BE"I	Н	0			"00	3F"	Н		<u> </u>
COM2	COM79		"0100"H								01"				•		"	013	3E"I	Н				"01	3F'	Н		
COM3	COM78			"02	00"	H			'	'02	01"	Н			•		")23	BE"I	Н				"02	3F'	Н		
COM4	COM77			"03	00"H	4			'	'03	01"	Н			•		"	033	3E"I	Н				"03	3F'	н		
COM5	COM76			"04	00"l	-			'	'04	01"	Н			•		"	043	BE"I	Н				"04	3F"	Н		
COM6	COM75			"05	00"H	4				"05	501I	4			•		"	053	BE"I	Н				"05	3F"	Н		
COM7	COM74			"06	00"l	4			'	'06	01"	Н			•		"	063	BE"I	Н				"06	3F"	Н		
COM8	COM73			"07	'00"H	Η			'	07	01"	Н			•		"	073	BE"I	Н				"07	3F'	Н		
COM9	COM72			"08	00"l	4			'	'08	01"	Н			•		"	083	BE"I	Η				"08	3F"	Н		
COM10	COM71			"09	00"H	Η			'	'09	01"	Н		•••••	•		"	093	BE"I	Н				"09	3F'	Н		
COM11	COM70			"0A	.00"H	4		"0A01"H						•		"()A3	BE"I	Η				"0A	3F'	Ή			
COM12	COM69			"0B	00"l	4		"0B01"H					•••••	•	• "0B3E"H								"0B	3F'	Ή			
COM13	COM68			"0C	:00"l	Н		"0C01"H					•••••	•	• "0C3E"H								"0C	3F	'H			
COM14	COM67			"0D	00"	Н		"0D01"H						•	"0D3E"H							"0D	3F	'H				
COM15	COM66			"0E	00"	H			'	'0E	01"	H		•••••	•	"0E3E"H								"0E	3F'	Ή		
COM16	COM65			"0F00"H					'	'0F	01"	Н		•••••	•	"0F3E"H								"0F	3F'	Ή		
COM17	COM64			"10	00"l	1			'	'10	01"	H		•••••	•	"103E"H								"10	3F"	Н		
COM18	COM63			"11	00"l	Η			'	'11	01"	H		•••••	•				BE"I					"11				
COM19	COM62			"12	00"l	-					01"			•••••	•				BE"I					"12				
COM20	COM61			"13	00"l	-			'	'13	01"	H		•••••			133	BE"I	Η				"13	3F"	Н		_	
COM73	COM8			<u></u> 48	00"H	+			'	'48	01"	H_			•		"	483	BE"I	H				"48	3F'	Н		
COM74	COM7			"49	00"H	-			'	'49	01"	Н			•		",	493	BE"I	Н				"49	3F'	Н		
COM75	COM6			"4A	.00"l	-			"	4A	01"	H			•		"2	1A3	BE"I	Н				"4A	3F'	Ή		
COM76	COM5		_	"4B	00"l	-			"	4B	01"	H			•		"2	1B3	BE"I	Н				"4B	3F	Ή		
COM77	COM4			"4C	:00"l	Η			"	4C	01"	Н			•		"2	IC:	3E"	Н			_	"4C	3F	'H		_]
COM78	COM3			"4D	00"	H			"	4D	01"	H			•		"4	1D:	3E"	H				"4D	3F	'H		
COM79	COM2			"4E	00"	Н			'	'4E	01"	Н			•		"2	1E3	BE"I	Н				"4E	3F'	Ή		
COM80	COM1			"4F	00"I	Н			,	'4F	01"	Н			•		"2	4F3	BE"H	-				"4F	3F'	Ή		

Table 3Relationship between Display Position and GRAM Address (GS = 0, SGS = 0)

 Table 4
 Relationship between GRAM Data and Display Contents

GRAM Data	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB
GRAW Data	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Selection Palette	R	K pale	ette	G	K pale	ette	BK p	alette	Rł	< pale	tte	G	K pale	ette	BK p	alette
Output Pin	SEC	G (6n+	⊦1)	SE	G (6n-	+2)	SE (6n	G +3)	SE	G (6r	ı+4)	SE	G (6n	ı+5)	SE (6n	G 1+6)

Note: n = Lower 7-bit address (0 to 63)

SEG/C	OM Pin	SEG1	SEG2		SEG4	SEG5	SEG6	SEG7	SEG8	SECO				SEG12		SEC:373	-	SEG375	SEG376	SEG377	SEG378	SEG379	SEG380	SEG381	SEG382	SEG383	SEG384
CMS=0	CMS=1	DB 0		DB 7	DB 8		.DB 15	DB 0		D	08 DE 7 8	3		DB 15		D	B	DB 7	DB 8		DB 15	DB 0		DB 7	DB 8		.DB 15
COM1	COM80			"003	3F"⊦	ł			'	"0	03E'	Ή						"000)1"⊢	4				"000)0"⊦	ł	
COM2	COM79			"013	3F"⊦	ł			'	"0	13E'	Ή						"010)1"⊢	1				"01()0"⊦	ł	
COM3	COM78			"023	BF"⊢	ł			'	"0	23E'	'H						"020)1"⊢	1				"020)0"⊦	ł	
COM4	COM77			"033	BF"⊢	ł			'	"0	33E'	Ή			• • • • • • • • • • • •			"030)1"⊢	1				"03()0"⊦	ł	
COM5	COM76			"043	3F"⊦	ł			'	"0	43E'	'H						"040)1"⊢	1				"04()0"⊦	ł	
COM6	COM75			"053	BF"⊦	ł			I	"0	53E'	Ή						"05	01H	ł				"050)0"⊦	ł	
COM7	COM74			"063	BF"⊦	ł		"063E"H								• "0601"H								"060)0"⊦	ł	
COM8	COM73			"073	3F"⊦	ł		"073E"H							•• "0701"H								"07(00"⊦	ł		
COM9	COM72			"083	BF"⊢	ł		"083E"H						•••••	• "0801"H								"080)0"⊦	ł		
COM10	COM71			"093	3F"⊦	ł			I	"0	93E'	Ή			• • • • • • • • • • • •			"090)1"⊢	1				"090)0"⊦	ł	
COM11	COM70			"0A3	3F"⊦	ł			"	'0/	A3E'	'H			• • • • • • • • • • • •			'0A0)1"⊢	1			'	'0A0)0"H	ł	
COM12	COM69			"0B	3F"⊦	ł			"	"0B3E"H					• "0B01"H							'	'0B()0"H	ł		
COM13	COM68			"0C	3F"H	4		"0C3E"H							"0C01"H							'	'0C(00"⊦	ł		
COM14	COM67			"0D	3F"H	4		"0D3E"H						"0D01"H								'0D0	00"⊦	1			
COM15	COM66			"0E3	3F"H	H		"0E3E"H							• • • • • • • • • • • •	"0E01"H								"0E	00"H	1	
COM16	COM65			"0F3	3F"⊦	1			I	"0	F3E	"H				"0F01"H								"0F(00"H	1	
COM17	COM64			"103	3F"⊦	ł			'	"1	03E'	Ή				"1001"H								"10()0"H	ł	
COM18	COM63			"113	3F"⊦	ł			'	"1	13E'	Ή						"11()1"⊢	4				"11()0"⊦	ł	
COM19	COM62			"123	BF"⊢	ł			'	"1:	23E'	'H						"120)1"⊢	1				"12()0"⊦	ł	
COM20	COM61			"133	BF"⊢	1			'	"1	33E'	'H						"130)1"⊢	1				"13()0"⊦	ł	
																"1301"H											
COM73	COM8			"483	BF"⊢	ł			'	"4	83E'	Ή						"480)1"⊢	1				"48()0"⊦	ł	
COM74	COM7			"493	3F"⊦	ł			'	"4	93E'	Ή						"490)1"⊢	4				"49()0"⊦	ł	
COM75	COM6			"4A3	3F"H	-			"	'4/	A3E'	'H		_				'4A()1"⊢	1				'4A()0"⊦	1	
COM76	COM5			"4B	3F"H	1			"	'4	B3E'	'H						'4B()1"⊦	1				'4B()0"H		
COM77	COM4			"4C	3F"H	1			"	'4(C3E	"H						'4C()1"⊦	1				'4C)0"⊦	1	
COM78	COM3			"4D;	3F"H	Η			"	'41	D3E	"H						'4D(01"⊦	1			'	'4D()0"⊦	1	
COM79	COM2			"4E	3F"H	1			'	"4	E3E	"H			•••••			"4E()1"H	Η				"4E	00"H	1	
COM80	COM1			"4F3	3F"⊦	-				"4	F3E	"H			•••••			"4F()1"⊦	1				"4F(00"H	1	

 Table 5
 Relationship between Display Position and GRAM Address (GS = 0, SGS = 1)

 Table 6
 Relationship between GRAM Data and Display Contents

GRAM Data	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB
GINAINI Dala	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Selection Palette	R	K pale	ette	G	K pale	ette	BK p	alette	Rk	(pale	tte	Gł	<pale< td=""><td>tte</td><td>BK p</td><td>alette</td></pale<>	tte	BK p	alette
Output Pin	SEC	G (384	l-6n)	SEC	G (383	8-6n)	SEG (382-6n)	SEC	G (381	-6n)	SEC	G (380)-6n)	SEG (3	379-6n)

Note: n = Lower 7-bit address (0 to 63)

SEG/COM Pin Image: Figure Signature Signate Signature Signature Signature Signature Signature Signature Si	, ""Н ""Н
COM1 COM80 "0000"H "0001"H "000E"H "000F" COM2 COM79 "0100"H "0101"H "010E"H "010F" COM3 COM78 "0200"H "0201"H "020E"H "020F" COM4 COM77 "0300"H "0301"H "030E"H "030F"	, ""Н ""Н
COM2 COM79 "0100"H "0101"H "010E"H "010F" COM3 COM78 "0200"H "0201"H "020E"H "020F" COM4 COM77 "0300"H "0301"H "030E"H "030F"	"H
COM3 COM78 "0200"H "0201"H "020E"H "020F" COM4 COM77 "0300"H "0301"H "030E"H "030F"	
COM4 COM77 "0300"H "0301"H "030E"H "030F"	
	"Н
	"Н
	"H
COM6 COM75 "0500"H "0501H "050E"H "050F"	"H
COM7 COM74 "0600"H "0601"H "060E"H "060F"	"Н
COM8 COM73 "0700"H "0701"H "070E"H "070F"	"Н
COM9 COM72 "0800"H "0801"H "080E"H "080F"	"Н
COM10 COM71 "0900"H "0901"H "090E"H "090F"	"Н
COM11 COM70 "0A00"H "0A01"H "0A0E"H "0A0F	-"H
COM12 COM69 "0B00"H "0B01"H "0B0E"H "0B0F	-"H
COM13 COM68 "0C00"H "0C01"H "0C0E"H "0C0F	-"H
COM14 COM67 "0D00"H "0D01"H "0D0E"H "0D0F	-"H
COM15 COM66 "0E00"H "0E01"H "0E0E"H "0E0F	•"Н
COM16 COM65 "0F00"H "0F01"H "0F0E"H "0F0F	"Н
COM17 COM64 "1000"H "1001"H "100E"H "100F"	"Н
COM18 COM63 "1100"H "1101"H "110E"H "110F"	"Н
COM19 COM62 "1200"H "1201"H "120E"H "120F"	"Н
COM20 COM61 "1300"H "1301"H "130E"H "130F"	"Н
COM73 COM8 "4800"H "4801"H "480E"H "480F"	"H
COM74 COM7 "4900"H "4901"H "490E"H "490F"	"Н
COM75 COM6 "4A00"H "4A01"H "4A0E"H "4A0F	-"H
COM76 COM5 "4B00"H "4B01"H "4B0E"H "4B0F	•"Н
COM77 COM4 "4C00"H "4C01"H "4C0E"H "4C0F	-"H
COM78 COM3 "4D00"H "4D01"H "4D0E"H "4D0F	-"H
COM79 COM2 "4E00"H "4E01"H "4E0E"H "4E0F	- "Н
COM80 COM1 "4F00"H "4F01"H "4F0E"H "4F0F	"H

Table 7Relationship between Display Position and GRAM Address (GS = 1, SGS = 0)

Notes: 1. When GS = 1, the address is automatically updated in 0000H to 4F0FH. 2. When the GS bit is updated, the RAM data must be rewritten.

Table 8	Relationship bet	ween GRAM Data	and Display Contents
---------	------------------	----------------	----------------------

	DB	DB	DB	DB	DB	DB	DB	DB								
GRAM Data	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Selection Palette	RK, G	K, BK	RK, G	K, BK	RK, G	K, BK	RK, G	K, BK	RK, G	К, ВК						
Output Pin								,	SEG (2 SEG (2					24n+19) 24n+21)		24n+22) 24n+24)

Note: n = Lower 4-bit address (0 to 15)

SEG/C	OM Pin	SEG1	SEG13	SEG25	SEG37		SEG337	SEG349	SEG361	SEG373
CMS=0	CMS=1	DBDB 0 7	DBDB	DBDB7	DB DB 15		DBDB7	DBDB 8 15	DB DB 7	DB DB 15
COM1	COM80	"000)F"H	"000)E"H		"000)1"H	"000)0"H
COM2	COM79	"010)F"H	"010)E"H		"010)1"H	"010	00"H
COM3	COM78	"020)F"H	"020)E"H	•••••	"020)1"H	"020	00"H
COM4	COM77	"030)F"H	"030	DE"H	•••••	"030)1"H	"030)0"H
COM5	COM76	"040)F"H	"040)E"H		"040)1"H	"040	00"H
COM6	COM75	"050)F"H	"050	DE"H	• • • • • • • • • • • • •	"05	01H	"050)0"H
COM7	COM74	"060)F"H	"060)E"H		"060)1"H	"060	00"H
COM8	COM73	"070)F"H	"070)E"H		"070)1"H	"070	00"H
COM9	COM72	"080)F"H	"080)E"H		"080)1"H	"080)0"H
COM10	COM71	"090)F"H	"090)E"H		"090)1"H	"090	00"H
COM11	COM70	"0A0	DF"H	"0A0	DE"H		"0A0)1"H	"0A0	00"H
COM12	COM69	"0B(DF"H	"0B0	DE"H		"0B0)1"H	"0B(00"H
COM13	COM68	"0C	DF"H	"0C(DE"H	•••••	"0C0)1"H	"0C(D0"H
COM14	COM67	"0D(DF"H	"0D0	DE"H		"0D0)1"H	"0D(D0"H
COM15	COM66	"0E0	DF"H	"0E(DE"H		"0E(D1"H	"0E(00"H
COM16	COM65	"0F()F"H	"0F(DE"H		"0F()1"H	"0F0	00"H
COM17	COM64	"100)F"H	"100)E"H	•••••	"100)1"H	"100	00"H
COM18	COM63	"110)F"H	"110)E"H		"110)1"H	"11()0"H
COM19	COM62	"120)F"H	"120)E"H		"120)1"H	"12()0"H
COM20	COM61	"130)F"H	"130)E"H		"130)1"H	"130)0"H
COM73	COM8	"480)F"H	"480)E"H		"480)1"H	"48()0"H
COM74	COM7	"490)F"H	"490)E"H		"490)1"H	"490)0"H
COM75	COM6	"4A(DF"H	"4A()E"H		"4A()1"H)0"H
COM76	COM5		DF"H	"4B()E"H		"4B("4B()0"H
COM77	COM4	"4C	DF"H	"4C(DE"H	•••••	"4C()1"H	"4C(D0"H
COM78	COM3	"4D	DF"H	"4D(DE"H		"4D()1"H	"4D(D0"H
COM79	COM2	"4E(DF"H	"4E(DE"H		"4E(D1"H	"4E()0"H
COM80	COM1	"4F()F"H	"4F(DE"H		"4F()1"H	"4F()0"H

Table 9Relationship between Display Position and GRAM Address (GS = 1, SGS = 1)

Notes: 1. When GS = 1, the address is automatically updated in 0000H to 4F0FH. 2. When the GS bit is updated, the RAM data must be rewritten.

Table 10	Relationship between	GRAM Data and Display Contents
----------	----------------------	---------------------------------------

	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB
GRAM Data	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Selection Palette	RK, G	K, BK	RK, G	K, BK	RK, G	K, BK	RK, G	K, BK	RK, G	K, BK	RK, G	K, BK	RK, G	K, BK	RK, G	K, BK
Output Pin	SEG (3	84-24n)	SEG (3	81-24n)	SEG (3	978-24n)	SEG (3	75-24n)	SEG (3	72-24n)	SEG (3	69-24n)	SEG (30	66-24n)	SEG (3	63-24n)
	SEG (3	882-24n)	SEG (3	879-24n)	SEG (3	76-24n)	SEG (3	73-24n)	SEG (3	70-24n)	SEG (3	67-24n)	SEG (3	64-24n)	SEG (3	61-24n)

Note: n = Lower 4-bit address (0 to 15)

Instructions

Outline

The HD66761 uses the 16-bit bus architecture. Before the internal operation of the HD66761 starts, control information is temporarily stored in the registers described below to allow high-speed interfacing with a high-performance microcomputer. The internal operation of the HD66761 is determined by signals sent from the microcomputer. These signals, which include the register selection signal (RS), the read/write signal (R/W), and the data bus signals (DB15 to DB0), make up the HD66761 instructions. There are eight categories of instructions that:

- Specify the index
- Read the status
- Control the display
- Control power management
- Process the graphics data
- Set internal GRAM addresses
- Transfer data to and from the internal GRAM
- Set grayscale level for the internal grayscale palette table

Normally, instructions that write data are used the most. However, an auto-update of internal GRAM addresses after each data write can lighten the microcomputer program load.

Because instructions are executed in 0 cycles, they can be written in succession.

Instruction Descriptions

Index

The index instruction specifies the RAM control indexes (R00h to R39h). It sets the register number in the range of 000000 to 111001 in binary form. However, R40h to R44h are disabled since they are test registers.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	0	*	*	*	*	*	*	*	*	*	ID6	ID5	ID4	ID3	ID2	ID1	ID0

Figure 1 Index Instruction

Status Read

The status read instruction reads the internal status of the HD66761.

L6–0: Indicate the driving raster-row position where the liquid crystal display is being driven.

C6–0: Read the contrast setting values (CT6–0).

R/W R	S DB18	5 DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
R 0	0	L6	L5	L4	L3	L2	L1	L0	0	C6	C5	C4	C3	C2	C1	C0

Figure 2 Status Read Instruction

Start Oscillation (R00h)

The start oscillation instruction restarts the oscillator from the halt state in the standby mode. After issuing this instruction, wait at least 10 ms for oscillation to stabilize before issuing the next instruction. (See the Standby Mode section.)

If this register is read forcibly, *761H is read. Since the MSB reads the maser/slave setting, 8761H is read when M/S pin = Vcc (master mode), and 0761H is read when M/S pin = GND (slave mode).

W 1 *	R/V	V RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	w	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1
	R	1	M/S	0	0	0	0	1	1	1	0	1	1	0	0	0	0	1

Figure 3 Start Oscillation Instruction

Driver Output Control (R01h)

CMS: Selects the output shift direction of a common driver. When CMS = 0, COM1 shifts to COM80. When CMS = 1, COM80 shifts to COM1.

SGS: Selects the output shift direction of a segment driver. When SGS = 0, SEG1 shifts to SEG384. When SGS = 1, SEG384 shifts to SEG1. When SGS = 0, the SEG1 pin assigns the color display to R, G, or B. When SGS = 1, the SEG384 pin assigns R, G, or B to the color display.

NL3–0: Specify the LCD drive duty ratio. The duty ratio can be adjusted for every eight raster-rows. GRAM address mapping does not depend on the setting value of the drive duty ratio.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	0	0	0	0	CMS	SGS	0	0	0	0	NL3	NL2	NL1	NL0

Figure 4 Driver Output Control Instruction

Table 11NL Bits and Drive Duty

NL3	NL2	NL1	NL0	Display Size	LCD Drive Duty	Common Driver Used
0	0	0	0	Setting disabled	Setting disabled	Setting disabled
0	0	0	1	384 x 16 dots	1/16 Duty	COM1–COM16
0	0	1	0	384 x 24 dots	1/24 Duty	COM1–COM24
0	0	1	1	384 x 32 dots	1/32 Duty	COM1–COM32
0	1	0	0	384 x 40 dots	1/40 Duty	COM1–COM40
0	1	0	1	384 x 48 dots	1/48 Duty	COM1–COM48
0	1	1	0	384 x 56 dots	1/56 Duty	COM1–COM56
0	1	1	1	384 x 64 dots	1/64 Duty	COM1–COM64
1	0	0	0	384 x 72 dots	1/72 Duty	COM1–COM72
1	0	0	1	384 x 80 dots	1/80 Duty	COM1–COM80

LCD-Driving-Waveform Control (R02h)

B/C: When B/C = 0, a B-pattern waveform is generated and alternates in every frame for LCD drive. When B/C = 1, a C-pattern waveform is generated and alternates in each raster-row specified by bits EOR and NW4–NW0 in the LCD-driving-waveform control register. For details, see the n-raster-row Reversed AC Drive section.

EOR: When the C-pattern waveform is set (B/C = 1) and EOR = 1, the odd/even frame-select signals and the n-raster-row reversed signals are EORed for alternating drive. EOR is used when the LCD is not alternated by combining the set values of the LCD drive duty ratio and the n raster-row. For details, see the n-raster-row Reversed AC Drive section.

NW4–0: Specify the number of raster-rows n that will alternate at the C-pattern waveform setting (B/C = 1). NW4–NW0 alternate for every set value + 1 raster-row, and the first to the 32nd raster-rows can be selected.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	0	0	0	0	0	0	0	B/C	EOR	NW4	NW3	NW2	NW1	NWO

Figure 5 LCD-Driving-Waveform Control Instruction

Power Control (R03h)

BS2–0: The LCD drive bias value is set within the range of a 1/5 to 1/10 bias. The LCD drive bias value can be selected according to its drive duty ratio and voltage. For details, see the Liquid-crystal-display Drive-bias Selector section.

BT1–0: The output factor of VLOUT between four-times, five-times, six-times, and seven-times step-up is switched. The LCD drive voltage level can be selected according to its drive duty ratio and bias. Lower amplification of the step-up circuit consumes less current.

PS1–0: The internal or external power supply is selected as the reference power supply for the LCD drive-voltage generator.

DC1–0: The operating frequency in the step-up circuit is selected. When the step-up operating frequency is high, the driving ability of the step-up circuit and the display quality become high, but the current consumption is increased. Adjust the frequency considering the display quality and the current consumption.

AP1–0: The amount of fixed current from the fixed current source in the operational amplifier for V pins (V1 to V5) is adjusted. When the amount of fixed current is large, the LCD driving ability and the display quality become high, but the current consumption is increased. Adjust the fixed current considering the display quality and the current consumption.

During no display, when AP1-0 = 00, the current consumption can be reduced by ending the operational amplifier and step-up circuit operation.

SLP: When SLP = 1, the HD66761 enters the sleep mode, where the internal display operations are halted except for the R-C oscillator, thus reducing current consumption. For details, see the Sleep Mode section. Only the following instructions can be executed during the sleep mode.

Power control (BS2-0, BT1-0, DC1-0, AP1-0, SLP, and STB bits)

During the sleep mode, the other GRAM data and instructions cannot be updated although they are retained.

STB: When STB = 1, the HD66761 enters the standby mode, where display operation completely stops, halting all the internal operations including the internal R-C oscillator. Further, no external clock pulses are supplied. For details, see the Standby Mode section.

Only the following instructions can be executed during the standby mode.

- a. Standby mode cancel (STB = 0)
- b. Start oscillation
- c. Power control (BS2-0, BT1-0, DC1-0, AP1-0, SLP, and STB bits)

During the standby mode, the GRAM data and instructions may be lost. To prevent this, they must be set again after the standby mode is canceled.

BS2	BS1	BS0	LCD Drive Bias Value
0	0	0	Setting disabled
0	0	1	1/10 bias drive
0	1	0	1/9 bias drive
0	1	1	1/8 bias drive
1	0	0	1/7 bias drive
1	0	1	1/6 bias drive
1	1	0	1/5 bias drive
1	1	1	Setting disabled

Table 12BS Bits and LCD Drive Bias Value

Table 13BT Bits and Output Level

0 0 Four-times step-up	
0 1 Five-times step-up	
1 0 Six-times step-up	
1 1 Seven-times step-up	

Table 14 DC Bits and Operating Clock Frequency

DC1	DC0	Operating Clock Frequency in the Step-up Circuit
0	0	32-divided clock
0	1	16-divided clock
1	0	128-divided clock
1	1	64-divided clock

Table 13	AT Dits and Amount of Fixed Current							
AP1	AP0	Amount of Fixed Current in the Operational Amplifier						
0	0	Operational amplifier and booster do not operate.						
0	1	Small						
1	0	Middle						
1	1	Large						

Table 15 AP Bits and Amount of Fixed Current

Table 16 Switching Reference Power Supply

PS1	PS0	VREG Pin	V1REF Pin	VLREF Pin
0	0	Output (1/2Vci)	Output (1/2Vci x N-times)	Input (from V1REF pin)
0	1	Input (Vreg)	Output (Vreg x N-times)	Input (from V1REF) Vreg: Voltage input from the VREG pin
1	0	Open (High-Z)	Open (High-Z)	Input (Vlcd: LCD voltage) Vlcd: Voltage input from the VLREF pin
1	1	Setting disabled		

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	0	BS2	BS1	BS0	BT1	BT0	PS1	PS0	DC1	DC0	AP1	AP0	SLP	STB

Figure 6 Power Control Instruction

Contrast Control (R04h)

CT6–0: These bits control the LCD drive voltage (potential difference between V1 and GND) to adjust 128-step contrast. For details, see the Contrast Adjuster section.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	0	0	0	VR2	VR1	VR0	0	СТ6	CT5	СТ4	СТЗ	СТ2	CT1	СТО

Figure 7 Contrast Control Instruction

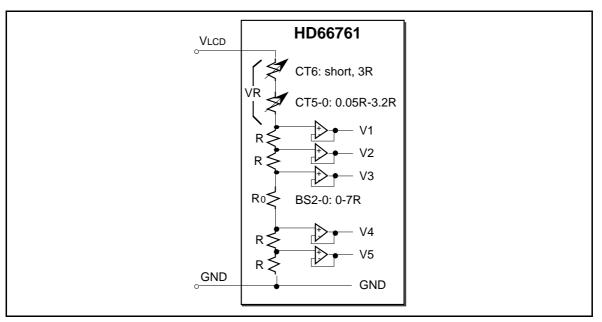


Figure 8 Contrast Adjuster

Table 17	CT Bits and Variable Resistor Value of Contrast Adjuster
----------	--

CT Set	Value		Variable Resistor (VR)				
CT5	CT4	CT3	CT2	CT1	CT0	CT6 = 0	CT6 = 1
0	0	0	0	0	0	6.20 x R	3.20 x R
0	0	0	0	0	1	6.15 x R	3.15 x R
0	0	0	0	1	0	6.10 x R	3.10 x R
0	0	0	0	1	1	6.05 x R	3.05 x R
0	0	0	1	0	0	6.00 x R	3.00 x R
			•			•	•
			•			•	•
1	1	1	1	0	1	3.15 x R	0.15 x R
1	1	1	1	1	0	3.10 x R	0.10 x R
1	1	1	1	1	1	3.05 x R	0.05 x R

VR2–0: These bits adjust the output voltage (V1REF) in the LCD drive reference generator in the range of six- to 13-times of Vreg (1/2Vci or VREG pin input voltage).

VR2	VR1	VR0	V1REF Voltage Setting
0	0	0	Vreg x six-times
0	0	1	Vreg x seven-times
0	1	0	Vreg x eight-times
0	1	1	Vreg x nine-times
1	0	0	Vreg x ten-times
1	0	1	Vreg x 11-times
1	1	0	Vreg x 12-times
1	1	1	Vreg x 13-times

Table 18	VR Bits	and	V1REF	Voltage

Entry Mode (R05h)

Compare Register (R06h)

The write data sent from the microcomputer is modified in the HD66761 and written to the GRAM. The display data in the GRAM can be quickly rewritten to reduce the load of the microcomputer software processing. For details, see the Graphics Operation Function section.

SWP: When SWP = 1, the upper and lower bytes in the two-byte data sent from the microcomputer are swapped and written to the GRAM. When SWP = 0, this bit directly writes the two-byte data sent from the microcomputer to the GRAM. This swap processing is performed only for the data sent from the microcomputer before logical operation. When SWP = 1, the upper and lower bytes in the write data mask (WM15–0) are swapped to be executed with the write data.

I/D: When I/D = 1, the address counter (AC) is automatically incremented by 1 after the data is written to the GRAM. When I/D = 0, the AC is automatically decremented by 1 after the data is written to the GRAM.

AM: Set the automatic update method of the AC after the data is written to the GRAM. When AM = 0, the data is continuously written in parallel. When AM = 1, the data is continuously written vertically.

LG2–0: Compare the data read from the GRAM by the microcomputer with the compare registers (CP7–0) by a compare/logical operation and write the results to GRAM. For details, see the Logical/Compare Operation Function.

CP7–0: Set the compare register for the compare operation with the data read from the GRAM or written by the microcomputer.

W 1 0 0 0 0 0 SWP 0 0 I/D AM LG2 L	R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	w	1	0	0	0	0	0	0	0	SWP	0	0	0	I/D	АМ	LG2	LG1	LG0
W 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	w	1	0	0	0	0	0	0	0	0	CP7	CP6	CP5	CP4	CP3	CP2	CP1	CP0

Figure 9 Entry Mode and Compare Register

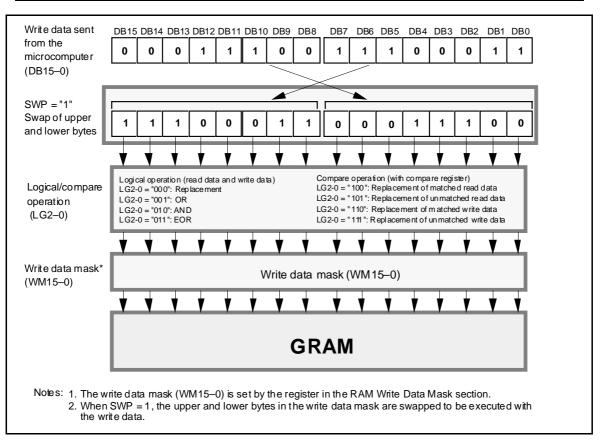


Figure 10 Logical/Compare Operation and Swapping for the GRAM

Display Control (R07h)

VLE2–1: When VLE1 = 1, a vertical scroll is performed in the 1st screen. When VLE2 = 1, a vertical scroll is performed in the 2nd screen. Vertical scrolling on the two screens can be independently controlled.

SPT: When SPT = 1, the 2-division LCD drive is performed. For details, see the Screen-division Driving Function section.

GS: When GS = 0, the display is in eight grayscale mode and displays 256 colors by selecting eight grayscales from 16 grayscale levels. When GS = 1, the display is in four grayscales and displays 256 colors by selecting four grayscales from 16 grayscale levels. In four-grayscale mode, four colors can be displayed with two bits per pixel (RGB). GRAM data must be rewritten when the GS bit is swapped.

When GS = 1, the GRAM address increments or decrements addresses from 0000H to 4F0FH. For details, see the Grayscale Palette and Four-color Display Mode sections.

REV: Displays all character and graphics display sections with reversal when REV = 1. For details, see the Reversed Display Function section. Since the grayscale level can be reversed, display of the same data is enabled on normally-white and normally-black panels.

D1–0: Display is on when D1 = 1 and off when D1 = 0. When off, the display data remains in the GRAM, and can be displayed instantly by setting D1 = 1. When D1 is 0, the display is off with the SEG1 to SEG384 outputs and COM1 to COM80 outputs set to the GND level. Because of this, the HD66761

can control the charging current for the LCD with AC driving.

When D1-0 = 01, the internal display of the HD66761 is performed although the display is off. When D1-0 = 00, the internal display operation halts and the display is off.

Table 19D Bits and Operation

D1	D0	SEG/COM Output	HD66761 Internal Display Operation	Master/Slave Signal (OSC, CL1, FLM, and M)
0	0	GND	Halt	Halt
0	1	GND	Operate	Operate
1	0	Unlit display	Operate	Operate
1	1	Display	Operate	Operate

Notes: 1. The internal power supply can operate independently from D1-0.

2. Writing from the microcomputer to the GRAM is independent from D1-0.

3. In the sleep and standby modes, D1–0 = 00. However, the register contents of D1–0 are not modified.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	0	0	0	VLE 2	VLE 1	SPT	0	0	0	0	GS	REV	D1	D0

Figure 11 Display Control Instruction

Cursor Control (R08h)

C: When C = 1, the window cursor display is started. The display mode is selected by the CM1–0 bits, and the display area is specified in a pixel unit by the horizontal cursor position register (HS6–0 and HE6–0 bits) and vertical cursor position register (VS6–0 and VE6–0 bits). The cursor color (CR, CG, or CB) can be set to any of eight colors in the window cursor. However, the cursor color cannot be controlled by the grayscale. For details, see the Color Window Cursor Control section.

CM1–0: The display mode of the window cursor is selected. These bits can display a eight-color cursor, reversed cursor, eight-color blink cursor, and reversed blink cursor.

CR/CB/CG: The window cursor color can be specified. Red, blue, green, white, black, or any combination color can be displayed. However, the cursor color cannot be controlled by the grayscale. For details, see the Color Window Cursor Control section.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	0	0	0	CR	CG	СВ	0	0	0	С	0	0	CM1	СМО

Figure 12 Cursor Control Instruction

Table	20	CM Bits and Window Cursor Display Mode
CM1	CM0	Window Cursor Display Mode
0	0	Eight-color cursor (displaying the window cursor with the color specified by CR, CG, or CB)
0	1	Reversed cursor (displaying reversed grayscale data in the window cursor)
1	0	Eight-color blink cursor (alternately blinking normal and eight-color display of CR, CG, or CB in the window cursor)
1	1	Reversed blink cursor (alternately blinking normal and reversed display of the grayscale data in the window cursor)

Grayscale and Blink Synchronization (R09h)

Initializes the blink and frame counters, which control the blink cycle and grayscale generation, respectively. During master/slave operation, blinking between master and slave and synchronization of the grayscale generation cycle are needed. Synchronize the cycle after reading the status and determining the display-read raster-row.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 13 Grayscale and Blink Synchronization Instructions

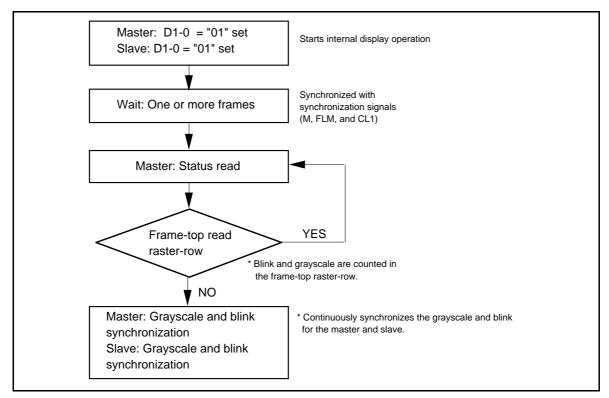


Figure 14 Grayscale and Blink Synchronization

Horizontal Scroll Control (R10h)

HL4–0: Specify the amount of horizontal scroll. The horizontal scroll is performed to the left in fourpixel (RGB) units. After the 128th pixel is displayed, one pixel is displayed. On a divided-screen display, both screens are scrolled.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	0	0	0	0	0	0	0	0	0	HL4	HL3	HL2	HL1	HL0

Figure 15 Horizontal Scroll Control Instructions

HL4	HL3	HL2	HL1	HL0	Amount of Horizontal Scroll
0	0	0	0	0	Display from 1st pixel (no scroll)
0	0	0	0	1	Display from 5th pixel
0	0	0	1	0	Display from 9th pixel
0	0	0	1	1	Display from 13th pixel
0	0	1	0	0	Display from 17th pixel
		:			:
0	0	1	1	0	Display from 121st pixel
1	1	1	1	1	Display from 125th pixel

Table 21 HL Bits and Horizontal Scroll

Vertical Scroll Control (R11h)

VL16–10: Specify the display-start raster-row at the 1st screen display for vertical smooth scrolling. Any raster-row from the first to 80th can be selected. After the 80th raster-row is displayed, the display restarts from the first raster-row. The display-start raster-row (VL16–10) is valid only when VLE1 = 1. The raster-row display is fixed when VLE1 = 0. (VLE1 is the 1st-screen vertical-scroll enable bit.)

VL26–20: Specify the display-start raster-row at the 2nd screen display. The display-start raster-row (VL26–20) is valid only when VLE2 = 1. The raster-row display is fixed when VLE2 = 0. (VLE2 is the 2nd-screen vertical-scroll enable bit.) The vertical scroll for the 1st and 2nd screens can be independently set.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	VL 26	VL 25	VL 24	VL 23	VL 22	VL 21	VL 20	0	VL 16	VL 15	VL 14	VL 13	VL 12	VL 11	VL 10

VL26 VL16	VL25 VL15	VL24 VL14	VL23 VL13	VL22 VL12	VL21 VL11	VL20 VL10	Display-start Raster-row
0	0	0	0	0	0	0	1st raster-row
0	0	0	0	0	0	1	2nd raster-row
0	0	0	0	0	1	0	3rd raster-row
0	0	0	0	0	1	1	4th raster-row
0	0	0	0	1	0	0	5th raster-row
:	:	:	:	:	:	:	:
1	0	0	1	1	1	0	79th raster-row
1	0	0	1	1	1	1	80th raster-row

Table 22VL Bits and Display-start Raster-row

Note: Do not set over the 80th (4FH) raster-row.

Horizontal Cursor Position (R12h)

Vertical Cursor Position (R13h)

HS6–0: Specify the start position for horizontally displaying the window cursor in a pixel unit. The cursor is displayed from the 'set value + 1' pixel. Ensure that $HS6-0 \le HE6-0$.

HE6–0: Specify the end position for horizontally displaying the window cursor in a pixel unit. The cursor is displayed to the 'set value + 1' pixel. Ensure that $HS6-0 \le HE6-0$.

VS6–0: Specify the start position for vertically displaying the window cursor in a raster-row unit. The cursor is displayed from the 'set value + 1' raster-row. Ensure that VS6– $0 \le VE6-0$.

VE6–0: Specify the end position for vertically displaying the window cursor in a raster-row unit. The cursor is displayed to the 'set value + 1' raster-row. Ensure that VS6– $0 \le$ VE6–0.

W 1 0 HE6 HE5 HE4 HE3 HE2 HE1 HE0 0 HS6 HS5 HS4 HS3 HS2	HE1 HE0 0 HS6 HS5 HS4 HS3 HS2 HS1	Пел
		1130
W 1 0 VE6 VE5 VE4 VE3 VE2 VE1 VE0 0 VS6 VS5 VS4 VS3 VS2	VE1 VE0 0 VS6 VS5 VS4 VS3 VS2 VS1	VSO

Figure 17 Horizontal Cursor Position and Vertical Cursor Position Instructions

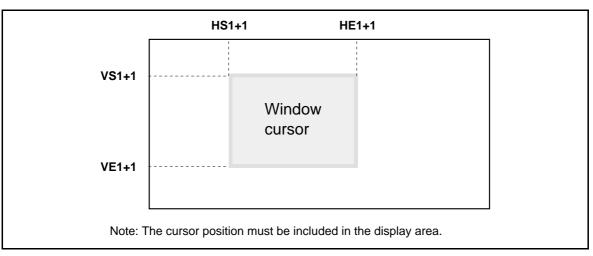


Figure 18 Window Cursor Position

1st Screen Driving Position (R14h)

2nd Screen Driving Position (R15h)

SS16–0: Specify the driving start position for the first screen in a line unit. The LCD driving starts from the 'set value + 1' common driver.

SE16–0: Specify the driving end position for the first screen in a line unit. The LCD driving is performed to the 'set value + 1' common driver. For instance, when SS16-10 = 07H and SE16-10 = 10H are set, the LCD driving is performed from COM8 to COM17, and non-selection driving is performed for COM1 to COM7, COM18, and others. Ensure that $SS16-10 \le SE16-10 \le 4FH$. For details, see the Screen-division Driving Function section.

SS26–0: Specify the driving start position for the second screen in a line unit. The LCD driving starts from the 'set value + 1' common driver. The second screen is driven when SPT = 1.

SE26–0: Specify the driving end position for the second screen in a line unit. The LCD driving is performed to the 'set value + 1' common driver. For instance, when SPT = 1, SS26–20 = 20H, and SE26–20 = 4FH are set, the LCD driving is performed from COM33 to COM80. Ensure that SS16–10 \leq SE16–10 \leq SS26–20 \leq SE26–20 \leq 4FH. For details, see the Screen-division Driving Function section.

W 1 0 SE16 SE15 SE14 SE13 SE12 SE11 SE10 0 SS16 SS14 SS13 SS12 SS11 SS13 W 1 0 SE26 SE25 SE24 SE23 SE22 SE21 SE20 0 SS26 SS24 SS23 SS22 SS21 SS25	R/W	RS	DB15	5 DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	w	1	0	SE16	SE15	SE14	SE13	SE12	SE11	SE10	0	SS16	SS15	SS14	SS13	SS12	SS11	SS10
W U 3E20 3E23 3E24 3E23 3E22 3E21 3E20 U 3320 3324 3323 3322 3321 332	w	1	0	SE26	SE25	SE24	SE23	SE22	SE21	SE20	0	SS26	SS25	SS24	SS23	SS22	SS21	SS20

Figure 19	1st Screen Driving Position and 2nd Screen Driving Position
I Igui C I /	ist bereen briving i ostion and 2nd bereen briving i ostion

RAM Write Data Mask (R20h)

WM15–0: In writing to the GRAM, these bits mask writing in a bit unit. When WM15 = 1, this bit masks the write data of DB15 and does not write to the GRAM. Similarly, the WM14–0 bits mask the write data of DB14–0 in a bit unit. When SWP = 1, the upper and lower bytes in the write data mask are swapped. For details, see the Graphics Operation Function section.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	WM 15	WM 14	WM 13	WM 12	WM 11	WM 10		WM 8	WM 7	WM 6	WM 5	WM 4	WM 3	WM 2	WM 1	WM 0

Figure 20 RAM Write Data Mask Instruction

RAM Address Set (R21h)

AD14–0: Initially set GRAM addresses to the address counter (AC). Once the GRAM data is written, the AC is automatically updated according to the AM and I/D bit settings. This allows consecutive accesses without resetting addresses. Once the GRAM data is read, the AC is not automatically updated. In four-color mode (GS = 1), the address for GRAM write is automatically updated from 0000H to 4F0FH. GRAM address setting is not allowed in the sleep mode or standby mode.

R/W	RS	DB15	DB14	4 DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	AD 14	AD 13	AD 12	AD 11	AD 10	AD9	AD8	0	0	AD5	AD4	AD3	AD2	AD1	AD0

Figure 21 RAM Address Set Instruction

Table 23 GRAM Address Range in Eight-grayscale Mode (GS = 0)

AD14–AD0	GRAM Setting
"0000"H–"003F"H	Bitmap data for COM1
"0100"H–"013F"H	Bitmap data for COM2
"0200"H–"023F"H	Bitmap data for COM3
"0300"H–"033F"H	Bitmap data for COM4
:	:
"4C00"H–"4C3F"H	Bitmap data for COM77
"4D00"H–"4D3F"H	Bitmap data for COM78
"4E00"H–"4E3F"H	Bitmap data for COM79
"4F00"H–"4F3F"H	Bitmap data for COM80

AD14–AD0	GRAM Setting
"0000"H–"000F"H	Bitmap data for COM1
"0100"H–"010F"H	Bitmap data for COM2
"0200"H–"020F"H	Bitmap data for COM3
"0300"H–"030F"H	Bitmap data for COM4
:	:
"4C00"H–"4C0F"H	Bitmap data for COM77
"4D00"H–"4D0F"H	Bitmap data for COM78
"4E00"H–"4E0F"H	Bitmap data for COM79
"4F00"H–"4F0F"H	Bitmap data for COM80

 Table 24
 GRAM Address Range in Four-grayscale Mode (GS = 1)

Write Data to GRAM (R22h)

WD15–0: Write 16-bit data to the GRAM. This data calls each grayscale palette. After a write, the address is automatically updated according to the AM and I/D bit settings. During the sleep and standby modes, the GRAM cannot be accessed.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	WD 15	WD 14	WD 13	WD 12	WD 11	WD 10	WD 9	WD 8	WD 7	WD 6	WD 5	WD 4	WD 3	WD 2	WD 1	WD 0

Figure 22 Write Data to GRAM Instruction

	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
[GRAM write data]	WD 15	WD 14	WD 13	WD 12	WD 11	WD 10	WD 9	WD 8	WD 7	WD 6	WD 5	WD 4	WD 3	WD 2	WD 1	WD 0
[Eight-grayscale mode]	R2	R1	R0	G2	G1 xel	G0	B1	В0	R2	R1	R0	G2	G1	G0	B1	В0
[Four-grayscale mode]	C1 1 pixe	C0 el	C1	C0	C1	C0	C1	C0	C1	CO	C1	C0	C1	CO	C1	C0

Figure 23 GRAM Write Data

Table 25	GRAM Data and R Grayscale Palette in the Eight-grayscale Mode (GS = 0)
----------	--

GRAI	M Data	Setting				
R2	R1	R0	<r> Grayso</r>	ale Palette		
0	0	0	RK03	RK02	RK01	RK00
0	0	1	RK13	RK12	RK11	RK10
0	1	0	RK23	RK22	RK21	RK20
0	1	1	RK33	RK32	RK31	RK30
1	0	0	RK43	RK42	RK41	RK40
1	0	1	RK53	RK52	RK51	RK50
1	1	0	RK63	RK62	RK61	RK60
1	1	1	RK73	RK72	RK71	RK70

Table 26	GRAM Data and G Grayscale Palette in the Eight-grayscale Mode (GS = 0)
I ubic #0	Grann Data and G Graybeare I arette in the Eight Graybeare fibue (GB = 0)

GRAI	M Data	Setting				
G2	G1	G0	<g> Grayso</g>	ale Palette		
0	0	0	GK03	GK02	GK01	GK00
0	0	1	GK13	GK12	GK11	GK10
0	1	0	GK23	GK22	GK21	GK20
0	1	1	GK33	GK32	GK31	GK30
1	0	0	GK43	GK42	GK41	GK40
1	0	1	GK53	GK52	GK51	GK50
1	1	0	GK63	GK62	GK61	GK60
1	1	1	GK73	GK72	GK71	GK70

Table 27GRAM Data and B Grayscale Palette in the Eight-grayscale Mode (GS = 0)

GRAM	Data Setting	_									
B1	B0	 Grays	> Grayscale Palette								
0	0	BK03	BK02	BK01	BK00						
0	1	BK13	BK12	BK11	BK10						
1	0	BK23	BK22	BK21	BK20						
1	1	BK33	BK32	BK31	BK30						

GRA Data Sett	a	_												
C1	C0	<r> 0</r>	Graysca	le Pale	tte	<g> (</g>	Graysca	le Pale	tte	 Grayscale Palette				
0	0	RK03	RK02	RK01	RK00	GK03	GK02	GK01	GK00	BK03	BK02	BK01	BK00	
0	1	RK13	RK12	RK11	RK10	GK13	GK12	GK11	GK10	BK13	BK12	BK11	BK10	
1	0	RK23	RK22	RK21	RK20	GK23	GK22	GK21	GK20	BK23	BK22	BK21	BK20	
1	1	RK33	RK32	RK31	RK30	GK33	GK32	GK31	GK30	BK33	BK32	BK31	BK30	

Table 28GRAM Data and Grayscale Palette in the Four-grayscale Mode (GS = 1)

Read Data from GRAM (R22h)

RD15–0: Read 16-bit data from the GRAM. When the data is read to the microcomputer, the first-word read immediately after the GRAM address setting is latched from the GRAM to the internal read-data latch. The data on the data bus (DB15–0) becomes invalid and the second-word read is normal.

When bit processing, such as a logical operation, is performed within the HD66761, only one read can be processed since the latched data in the first word is used.

R/W	RS	DB15					-							
R	1	RD 15	RD 14	RD 13		RD 10	RD 8	RD 6	RD 5	RD 4	RD 3	RD 2	RD 1	RD 0

Figure 24 Read Data from GRAM Instruction

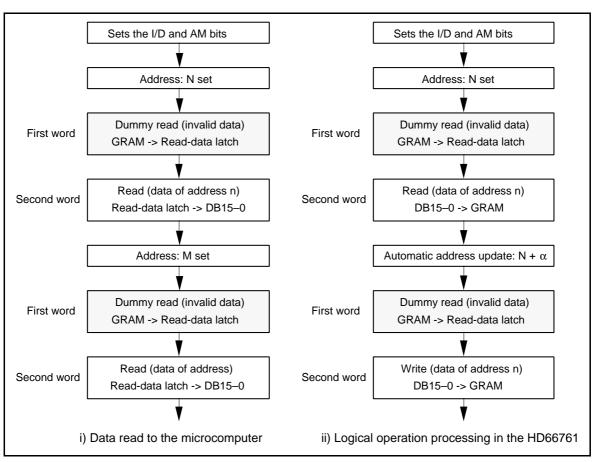


Figure 25 GRAM Read Sequence

Grayscale Palette Control (R30h to R39h)

RK73–00 : Specify the R-grayscale level for eight palettes from the 16-grayscale level. For details, see the Grayscale Palette and Grayscale Palette Table sections.

In four-grayscale display mode, the number of palettes to be used is four. For details, see the Fourgrayscale Display Mode section.

GK73–00 : Specify the G-grayscale level for eight palettes from the 16-grayscale level. For details, see the Grayscale Palette and Grayscale Palette Table sections.

In four-grayscale display mode, the number of palettes to be used is four. For details, see the Fourgrayscale Display Mode section.

BK33–00 : Specify the B-grayscale level for four palettes from the 16-grayscale level. For details, see the Grayscale Palette and Grayscale Palette Table sections.

In four-grayscale display mode, the number of palettes to be used is four. For details, see the Fourgrayscale Display Mode section.

	, R/W,	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
R30	w	1	0	0	0	0	RK 13	RK 12	RK 11	RK 10	0	0	0	0	RK 03	RK 02	RK 01	RK 00
R31	w	1	0	0	0	0	RK 33	RK 32	RK 31	RK 30	0	0	0	0	RK 23	RK 22	RK 21	RK 20
R32	w	1	0	0	0	0	RK 53	RK 52	RK 51	RK 50	0	0	0	0	RK 43	RK 42	RK 41	RK 40
R33	w	1	0	0	0	0	RK 73	RK 72	RK 71	RK 70	0	0	0	0	RK 63	RK 62	RK 61	RK 60
R34	w	1	0	0	0	0	GK 13	GK 12	GK 11	GK 10	0	0	0	0	GK 03	GK 02	GK 01	GK 00
R35	w	1	0	0	0	0	GK 33	GK 32	GK 31	GK 30	0	0	0	0	GK 23	GK 22	GK 21	GK 20
R36	w	1	0	0	0	0	GK 53	GK 52	GK 51	GK 50	0	0	0	0	GK 43	GK 42	GK 41	GK 40
R37	w	1	0	0	0	0	GK 73	GK 72	GK 71	GK 70	0	0	0	0	GK 63	GK 62	GK 61	GK 60
R38	w	1	0	0	0	0	ВК 13	BK 12	ВК 11	ВК 10	0	0	0	0	BK 03	BK 02	BK 01	ВК 00
R39	w	1	0	0	0	0	BK 33	BK 32	ВК 31	BK 30	0	0	0	0	BK 23	BK 22	BK 21	ВК 20

Figure 26 Grayscale Palette Control Instruction

Test Register (R40h to R44h)

Index registers R40h–R44h cannot be used or set since they are test registers. Do not change the contents of the instruction bits in these registers.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1						Т	est re	egister								

Figure 27 Test Register Instruction

Table 29 Instruction List

Reg. No. IR SR	D. S. A. N.	Т													ower Co	ue					Execution
	Register Name	R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Cycle
SR	Index	0	0	*	*	*	*	*	*	*	*	*	ID6	ID5	ID4	ID3	ID2	ID1	ID0	Sets the index register value.	0
51	Status read	1	0	0	L6	L5	L4	L3	L2	L1	L0	0	C6	C5	C4	C3	C2	C1	C0	Reads the driving raster-row position (L7-0) and contrast setting (C6-0).	0
R00h	Start oscillation	0	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1	Starts the oscillation mode.	10 ms
	Device code read	1	1	M/S	0	0	0	0	1	1	1	0	1	1	0	0	0	0	1	Reads *761H and master/slave setting (M/S).	0
R01h	Driver output control	0	1	0	0	0	0	0	0	CMS	SGS	0	0	0	0	NL3	NL2	NL1	NL0	Sets the common driver shift direction (CMS), segment driver shift	0
																				direction (SGS), and driving duty ratio (NL3-0).	
R02h	LCD-driving-waveform	0	1	0	0	0	0	0	0	0	0	0	B/C	EOR	NW4	NW3	NW2	NW1	NW0	Sets the LCD drive AC waveform (B/C), EOR output (EOR), and the	0
	control																			number of n-raster-rows (NW4-0) at C-pattern AC drive.	
R03h	Power control	0	1	0	0	0	BS2	BS1	BS0	BT1	BT0	PS1	PS0	DC1	DC0	AP1	AP0	SLP	STB	Sets the sleep mode (SLP), standby mode (STB), LCD power on	0
																				(AP1-0), boosting cycle (DC1-0), reference power-supply setting	
																				(PS1-0), boosting ouput multiplying factor (BT1-0), and LCD drive bias	
																				value (BS2-0).	
R04h	Contrast control	0	1	0	0	0	0	0	VR2	VR1	VR0	0	CT6	CT5	CT4	CT3	CT2	CT1	CT0	Sets the contrast adjustment (CT6-0) and regulator adjustment (VR2-0).	0
R05h	Entry mode	0	1	0	0	0	0	0	0	0	SWP	0	0	0	I/D	AM	LG2	LG1	LG0	Specifies the logical operation (LG2-0), AC counter mode (AM),	0
																				increment/decrement mode (I/D), and swap (SWP).	
R06h	Compare register	0	1	0	0	0	0	0	0	0	0	CP7	CP6	CP5	CP4	CP3	CP2	CP1	CP0	Sets the compare register (CP7-0).	0
R07h	Display control	0	1	0	0	0	0	0	VLE2	VLE1	SPT	0	0	0	0	GS	REV	D1	D0	Specifies display on (D1-0), reversed display (REV), 4-/16-grayscale	0
																				mode (GS), 4-grayscale display page (PG1-0), screen division driving	
																				(SPT), and vertical scroll (VLE2-1).	
R08h	Cursor control	0	1	0	0	0	0	0	CR	CG	CB	0	0	0	С	0	0	CM1	CM0	Specifies cursor display on (C), cursor display mode (CM1-0), and	
																				cursor color (CR, CG, or CB).	
R09h	Grayscale and blink synchronization	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Synchronizes the grayscale with the blink cycle.	0
R10h	Horizontal scroll control	0	1	0	0	0	0	0	0	0	0	0	0	0	HL4	HL3	HL2	HL1	HL0	Specifies the amount of horizontal scrolling (HL4-0).	0
R11h	Vertical scroll control	0	1	0	VL26	VL25	VL24	VL23	VL22	VL21	VL20	0	VL16	VL15	VL14	VL13	VL12	VL11	VL10	Specifies the 1st-screen display-start raster-row (VL16-10) and 2nd-	0
																				screen display-start raster-row (VL26-20).	
R12h	Horizontal cursor position	0	1	0	HE6	HE5	HE4	HE3	HE2	HE1	HE0	0	HS6	HS5	HS4	HS3	HS2	HS1	HS0	Sets horizontal cursor start (HS6-0) and end (HE6-0).	0
R13h	Vertical cursor position	0	1	0	VE6	VE5	VE4	VE3	VE2	VE1	VE0	0	VS6	VS5	VS4	VS3	VS2	VS1	VS0	Sets vertical cursor start (VS6-0) and end (VE6-0).	0
R14h	1st screen driving position	0	1	0	SE16	SE15	SE14	SE13	SE12	SE11	SE10	0	SS16	SS15	SS14	SS13	SS12	SS11	SS10	Sets 1st-screen driving start (SS16-10) and end (SE16-10).	0
R15h	2nd screen driving position	0	1	0	SE26	SE25	SE24	SE23	SE22	SE21	SE20	0	SS26	SS25	SS24	SS23	SS22	SS21	SS20	Sets 2nd-screen driving start (SS26-20) and end (SE26-20).	0
R20h	RAM write data mask	0	1	WM	WM	WM	WM	WM	WM	WM9	WM8	WM7	WM6	WM5	WM4	WM3	WM2	WM1	WM0	Specifies write data mask (WM15-0) at RAM write.	0
Dati		0		15	14	13	12	11	10			-	-			0.0 //					
R21h R22h	RAM address set Write data to GRAM	0	1	0		10/-:		14-8 (up	per)			0	0	10/-:4-		06-0 (low	ver)			Initially sets the RAM address to the address counter (AC).	0
RZZII		-	1				Data (Data (I	,				Writes data to the RAM.	0
R30h	Write data from GRAM	1 0	1	0	0		Data (u	/	RK12	RK11	RK10	0	0	Read	Data (·	RK02	RK01	DICOO	Reads data from the RAM.	0
R30h R31h	R-grayscale palette control (1)	0	1	0	0	0	0	RK13 RK33	RK12 RK32	RK11 RK31	RK10 RK30	0	0	0	0	RK03 RK23	RK02 RK22	RK01 RK21	RK00 RK20	Specifies the R-grayscale palette.	0
R32h	R-grayscale palette control (2) R-grayscale palette control (3)	0	1	0	0	0	0	RK53	RK52	RK51	RK50	0	0	0	0	RK43	RK42	RK41	RK20	Specifies the R-grayscale palette. Specifies the R-grayscale palette.	0
R33h	R-grayscale palette control (3)	0	1	0	0	0	0	RK73	RK72	RK71	RK70	0	0	0	0	RK63	RK62	RK61	RK40	Specifies the R-grayscale palette.	0
R34h	G-grayscale palette control (1)	0	1	0	0	0	0	GK13	GK12	GK11	GK10	0	0	0	0	GK03	GK02	GK01	GK00	Specifies the G-grayscale palette.	0
R35h	G-grayscale palette control (1)	0	1	0	0	0	0	GK13 GK33	GK12 GK32	GK11 GK31	GK10 GK30	0	0	0	0	GK03 GK23	GK02 GK22	GK01 GK21	GK00 GK20	Specifies the G-grayscale palette.	0
R36h	G-grayscale palette control (2)	0	1	0	0	0	0	GK53 GK53	GK52 GK52	GK51	GK50	0	0	0	0	GK23 GK43	GK22 GK42	GK21 GK41	GK20 GK40	Specifies the G-grayscale palette.	0
R37h	G-grayscale palette control (3)	0	1	0	0	0	0	GK73	GK72	GK71	GK70	0	0	0	0	GK63	GK62	GK61	GK60	Specifies the G-grayscale palette.	0
R38h	B-grayscale palette control (1)	0	1	0	0	0	0	BK13	BK12	BK11	BK10	0	0	0	0	BK03	BK02	BK01	BK00	Specifies the B-grayscale palette.	0
R39h	B-grayscale palette control (1)	0	1	0	0	0	0	BK13	BK32	BK31	BK30	0	0	0	0	BK23	BK22	BK21	BK20	Specifies the B-grayscale palette.	0
R40h	Test register (1)	0	1				0	51100	DIGZ		gister (di	-			0	51020	51122	DIVET	21120	Disables the use or setting of this register since this is the test register.	0
R41h	Test register (2)	0	1								gister (di									Disables the use or setting of this register since this is the test register.	0
R42h	Test register (3)	0	1								gister (di									Disables the use or setting of this register since this is the test register.	0
R43h	Test register (4)	0	1								gister (di									Disables the use or setting of this register since this is the test register.	0
	Test register (5)	0	1								gister (di									Disables the use or setting of this register since this is the test register.	0

Note: '*' means 'doesn't matter'.

Reset Function

The HD66761 is internally initialized by RESET input. Because the busy flag (BF) indicates a busy state (BF = 1) during the reset period, no instruction or GRAM data access from the MPU is accepted. The reset input must be held for at least 1 ms. Do not access the GRAM or initially set the instructions until the R-C oscillation frequency is stable after power has been supplied (10 ms).

Instruction Set Initialization:

- 1. Start oscillation executed
- 2. Driver output control (NL3-0 = 1001, SGS = 0, CMS = 0)
- 3. B-pattern waveform AC drive (B/C = 0, ECR = 0, NW4-0 = 00000)
- 4. Power control (PS1–0 = 00, DC1–0 = 00, AP1–0 = 00: LCD power off, SLP = 0: Sleep mode off, STB = 0: Standby mode off)
- 5. 1/10 bias drive (BS2–0 = 001), Four-times step-up (BT1–0 = 00), Weak contrast (CT6–0 = 0000000)
- 6. Entry mode set (SWP = 0, I/D = 1: Increment by 1, AM = 0: Horizontal move, LG2–0 = 000: Replace mode)
- 7. Compare register (CP7-0: 0000000)
- Display control (VLE2–1 = 00: No vertical scroll, SPT = 0, GS = 0: Eight-grayscale mode, REV = 0, D1–0 = 00: Display off)
- 9. Cursor control (CR/CG/CB = 000, C = 0: Cursor display off, CM1-0 = 00)
- 10. Horizontal scroll (HL4–0 = 00000)
- 11. Vertical scroll (VL26–20 = 000000, VL16–10 = 000000)
- 12. Window cursor display position (HS6–0 = HE6-0 = VS6-0 = VE6-0 = 0000000)
- 13. 1st screen division (DS16–10 = 00000000, DE16–10 = 1111111)
- 14. 2nd screen division (DS26–20 = 00000000, DE26–20 = 11111111)
- 15. RAM write data mask (WM15-0 = 0000H: No mask)
- 16. RAM address set (AD14-0 = 0000H)
- 17. Grayscale palette
 (RK03-00 = 0000, RK13-10 = 0011, RK23-20 = 0101, RK33-30 = 0111, RK43-40 = 1001, RK53-50 = 1011, RK63-60 = 1101, RK73-70 = 1111, GK03-00 = 0000, GK13-10 = 0011, GK23-20 = 0101, GK33-30 = 0111, GK43-40 = 1001, GK53-50 = 1011, GK63-60 = 1101, GK73-70 = 1111, BK03-00 = 0000, BK23-20 = 0101, BK43-40 = 1001, BK63-60 = 1111)

GRAM Data Initialization:

This is not automatically initialized by reset input but must be initialized by software while display is off (D1-0 = 00).

Output Pin Initialization:

- 1. LCD driver output pins (SEG/COM): Output GND level
- 2. Step-up circuit output pin (VLOUT): Outputs Vcc level
- 3. Oscillator output pin (OSC2): Outputs oscillation signal
- 4. Master/slave signals (CL1, CL2, M, and FLM): Halt

Parallel Data Transfer

16-bit Bus Interface

Setting the IM1/0 (interface mode) to the GND/GND level allows 68-system E-clock-synchronized 16-bit parallel data transfer. Setting the IM1/0 to the Vcc/GND level allows 80-system 16-bit parallel data transfer. When the number of buses or the mounting area is limited, use an 8-bit bus interface.

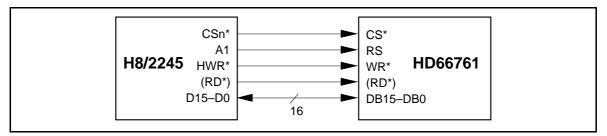


Figure 28 Interface to 16-bit Microcomputer

8-bit Bus Interface

Setting the IM1/0 (interface mode) to the GND/Vcc level allows 68-system E-clock-synchronized 8-bit parallel data transfer using pins DB15–DB8. Setting the IM1/0 to the Vcc/Vcc level allows 80-system 8-bit parallel data transfer. The 16-bit instructions and RAM data are divided into eight upper/lower bits and the transfer starts from the upper eight bits. Fix unused pins DB7–DB0 to the Vcc or GND level. Note that the upper bytes must also be written when the index register is written to.

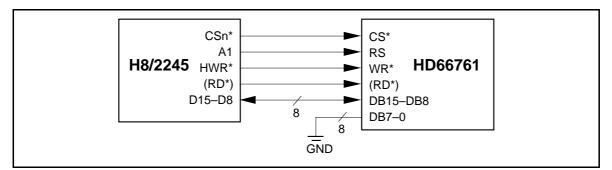


Figure 29 Interface to 8-bit Microcomputer

Note: Transfer synchronization function for an 8-bit bus interface

The HD66761 supports the transfer synchronization function which resets the upper/lower counter to count upper/lower 8-bit data transfer in the 8-bit bus interface. Noise causing transfer mismatch between the eight upper and lower bits can be corrected by a reset triggered by consecutively writing a 00H instruction four times. The next transfer starts from the upper eight bits. Executing synchronization function periodically can recover any runaway in the display system.

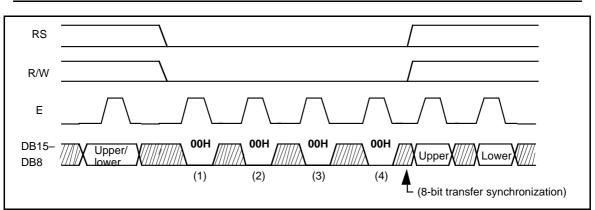


Figure 30 8-bit Transfer Synchronization

Graphics Operation Function

The HD66761 can greatly reduce the load of the microcomputer graphics software processing through the 16-bit bus architecture and internal graphics-bit operation function. This function supports the following:

- 1. A swap function that exchanges the upper and lower bytes in the 16-bit data sent from the microcomputer.
- 2. A write data mask function that selectively rewrites some of the bits in the 16-bit write data.
- 3. A logical operation write function that writes the data sent from the microcomputer and the original RAM data by a logical operation.
- 4. A conditional write function that compares the original RAM data or write data and the comparebit data and writes the data sent from the microcomputer only when the conditions match.

Even if the display size is large, the display data in the graphics RAM (GRAM) can be quickly rewritten.

The graphics bit operation can be controlled by combining the entry mode register, the bit set value of the RAM-write-data mask register, and the read/write from the microcomputer.

	Bit S	etting		
Operation Mode	I/D	AM	LG2-0	Operation and Usage
Write mode 1	0/1	0	000	Horizontal data replacement, horizontal-border drawing
Write mode 2	0/1	1	000	Vertical data replacement, vertical-border drawing
Write mode 3	0/1	0	110 111	Conditional horizontal data replacement, horizontal- border drawing
Write mode 4	0/1	1	110 111	Conditional vertical data replacement, vertical-border drawing
Read/write mode 1	0/1	0	001 010 011	Horizontal data write with logical operation, horizontal-border drawing
Read/write mode 2	0/1	1	001 010 011	Vertical data write with logical operation, vertical- border drawing
Read/write mode 3	0/1	0	100 101	Conditional horizontal data replacement, horizontal- border drawing
Read/write mode 4	0/1	1	100 101	Conditional vertical data replacement, vertical-border drawing

Table 30Graphics Operation

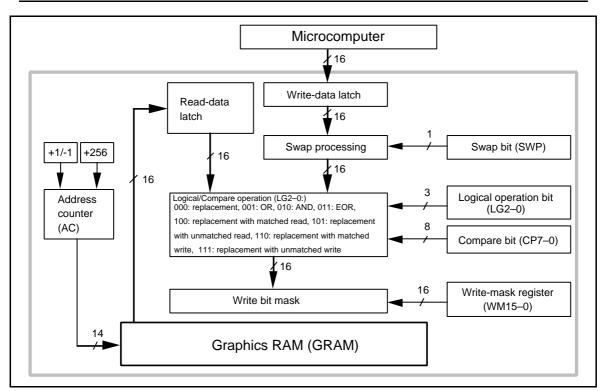


Figure 31 Data Processing Flow of the Graphics Bit Operation

Swap Function

The HD66761 has a byte-wise swap function that exchanges the upper and lower bytes in the two-byte data sent from the microcomputer. When SWP = 0, the data written by the microcomputer is directly transferred to the inside. When SWP = 1, the data written by the microcomputer is internally transferred by exchanging the upper and lower bytes.

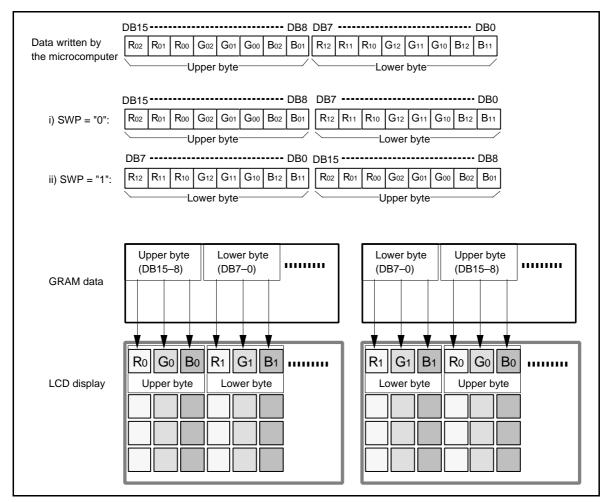


Figure 32 Example of Swap Function Operation

Write-data Mask Function

The HD66761 has a bit-wise write-data mask function that controls writing the two-byte data from the microcomputer to the GRAM. Bits that are 0 in the write-data mask register (WM15–0) cause the corresponding DB bit to be written to the GRAM. Bits that are 1 prevent writing to the corresponding GRAM bit to the GRAM; the data in the GRAM is retained. This function can be used when only one-pixel data is rewritten or the particular display color is selectively rewritten.

Data written by	DB15	R01	R00	G02				DB8 B01					G12	G11	G10	B12	DB0 B11]
the microcomputer					byte		1		ÌĹ					byte				ļ
i) SWP = "0":		5						DB8 Bot	ר ר				<u> </u>		Gu	B12	DB0	ן
1) SWP = 0.					byte		I		ΪĹ					byte		I	·/	ļ
ii) SWP = "1":	DB7 R12	R11	R10	G12	G11	G10		DB0 B11				R00	G02	G 01	G00	B ₀₂	DB8 B01]
			—L	.owei	· byte			/	/ `	\		—ι	Jpper	byte			/	,
Write-data mask	WM1	5	1	1	1	1	1	WM8	з \][//М7 0	0	0	1	1	1	0	WМ(0)
i) GRAM data	DB1	5	*	*	*	*	*	• DB8	8	DB7 R12		R10) *	*	*	_	- DB(_
(SWP = "0"):				Uppe	r byte	e		/	/				Lowe	r byte	9 		/	
									_									
ii) GRAM data	DB	7	*	*	*	*	*	• DB(с П	DB1		Roo) *	*	*	Boz		- I
(SWP = "1"):			.I	_L Lowe	r byte	e			/					r byte	 ə			

Figure 33 Example of Write-data Mask Function Operation

Logical/Compare Operation Function

The HD66761 performs a logical operation or conditional replacement between the two-byte write data sent from the microcomputer and the read data from the GRAM. The logical operation function has four types: replacement, OR, AND, and EOR. The conditional replacement performs a compare operation for the set value of the compare register (CP7–0) and the read data value from the GRAM, and rewrites only the pixel data in the GRAM that satisfies the conditions (in a byte unit). This function can be used when a particular color is selectively rewritten. The swap function or write-data mask function can be effectively used.

Bit Se	etting		
LG2	LG1	LG0	Description of Logical/Compare Operation Function
0	0	0	Writes the data written from the microcomputer directly to the GRAM. Only write processing is performed since the data in the read-data latch is not used.
0	0	1	ORs the data in the read-data latch and the data written by the microcomputer. Writes the result to GRAM. Read, modify, or write processing is performed.
0	1	0	ANDs the data in the read-data latch and the data written by the microcomputer. Writes the result to GRAM.
0	1	1	EORs the data in the read-data latch and the data written by the microcomputer. Writes the result to GRAM.
1	0	0	Compares the data in the read-data latch and the set value of the compare register (CP7–0). When the read data matches CP7–0, the data from the microcomputer is written to the GRAM. Only the particular color specified in the compare register can be rewritten. Read, modify, or write processing is performed.
1	0	1	Compares the data in the read-data latch and the set value of the compare register (CP7–0). When the read data does not match CP7–0, the data from the microcomputer is written to the GRAM. Colors other than the particular one specified in the compare register can be rewritten. Read, modify, or write processing is performed.
1	1	0	Compares the data written to the GRAM by the microcomputer and the set value of the compare register (CP7–0). When the write data matches CP7–0, the data from the microcomputer is written to the GRAM. Only write processing is performed.
1	1	1	Compares the data written to the GRAM by the microcomputer and the set value of the compare register (CP7–0). When the write data does not match CP7–0, the data from the microcomputer is written to the GRAM. Only write processing is performed.

Table 31 Logical/Compare Operation

Graphics Operation Processing

1. Write mode 1: AM = 0, LG2-0 = 000

This mode is used when the data is horizontally written at high speed. It can also be used to initialize the graphics RAM (GRAM) or to draw borders. The swap function (SWP) and write-data mask function (WM15–0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and automatically jumps to the counter edge one-raster-row below after it has reached the left or right edge of the GRAM.

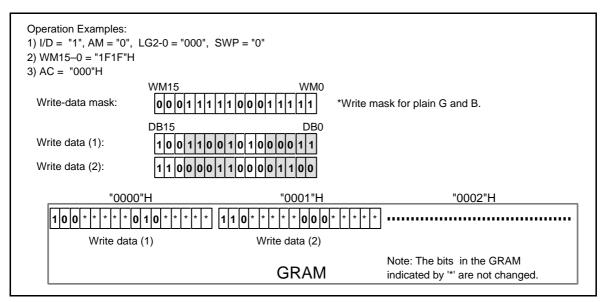


Figure 34 Writing Operation of Write Mode 1

2. Write mode 2: AM = 1, LG2–0 = 000

This mode is used when the data is vertically written at high speed. It can also be used to initialize the GRAM, develop the font pattern in the vertical direction, or draw borders. The swap function (SWP) and write-data mask function (WM15–0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D = 1) or upper-left edge (I/D = 0) following the I/D bit after it has reached the lower edge of the GRAM.

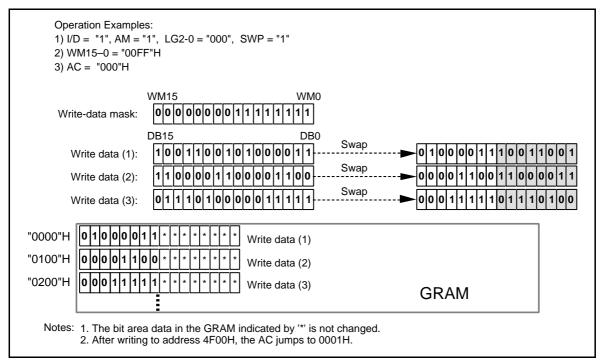


Figure 35 Writing Operation of Write Mode 2

3. Write mode 3: AM = 0, LG2-0 = 110/111

This mode is used when the data is horizontally written by comparing the write data and the set value of the compare register (CP7–0). When the result of the comparison in a byte unit satisfies the condition, the write data sent from the microcomputer is written to the GRAM. In this operation, the swap function (SWP) and write-data mask function (WM15–0) are also enabled. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and automatically jumps to the counter edge one-raster-row below after it has reached the left or right edge of the GRAM.

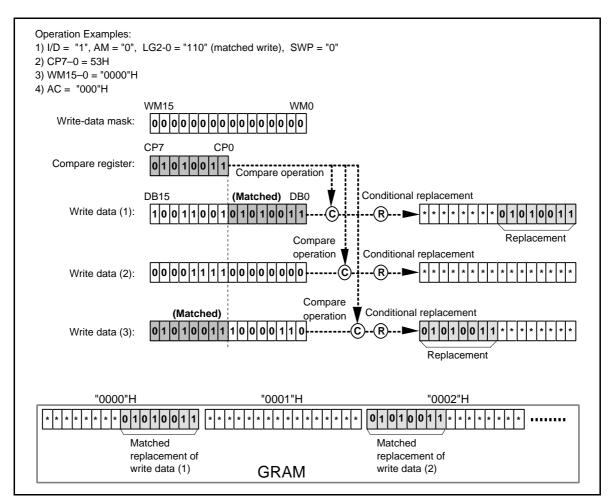


Figure 36 Writing Operation of Write Mode 3

4. Write mode 4: AM = 1, LG2–0 = 110/111

This mode is used when a vertical comparison is performed between the write data and the set value of the compare register (CP7–0) to write the data. When the result by the comparison in a byte unit satisfies the condition, the write data sent from the microcomputer is written to the GRAM. In this operation, the swap function (SWP) and write-data mask function (WM15–0) are also enabled. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D = 1) or upper-left edge (I/D = 0) following the I/D bit after it has reached the lower edge of the GRAM.

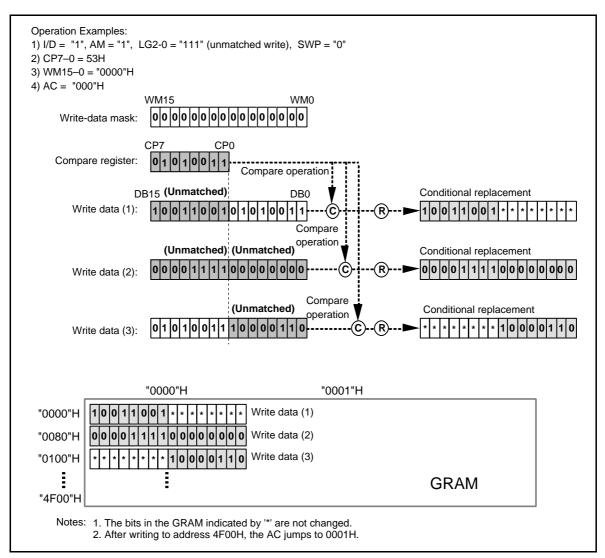


Figure 37 Writing Operation of Write Mode 4

5. Read/Write mode 1: AM = 0, LG2–0 = 001/010/011

This mode is used when the data is horizontally written at high speed by performing a logical operation with the original data. It reads the display data (original data), which has already been written in the GRAM, performs a logical operation with the write data sent from the microcomputer, and rewrites the data to the GRAM. This mode reads the data during the same access-pulse width (68-system: enabled high level, 80-system: RD* low level) as the write operation since reading the original data does not latch the read data into the microcomputer but temporarily holds it in the read-data latch. However, the bus cycle requires the same time as the read operation. The swap function (SWP) or write-data mask function (WM15–0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and automatically jumps to the counter edge one-raster-row below after it has reached the left or right edges of the GRAM.

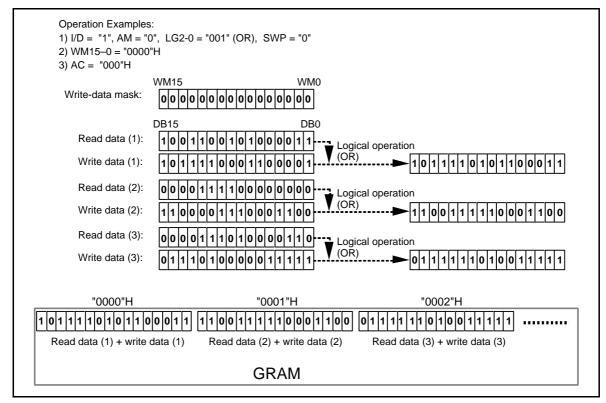


Figure 38 Writing Operation of Read/Write Mode 1

6. Read/Write mode 2: AM = 1, LG1-0 = 001/010/011

This mode is used when the data is vertically written at high speed by performing a logical operation with the original data. It reads the display data (original data), which has already been written in the GRAM, performs a logical operation with the write data sent from the microcomputer, and rewrites the data to the GRAM. This mode can read the data during the same access-pulse width (68-system: enabled high level, 80-system: RD* low level) as for the write operation since the read operation of the original data does not latch the read data into the microcomputer and temporarily holds it in the read-data latch. However, the bus cycle requires the same time as the read operation. The swap function (SWP) or write-data mask function (WM15–0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D = 1) or upper-left edge (I/D = 0) following the I/D bit after it has reached the lower edge of the GRAM.

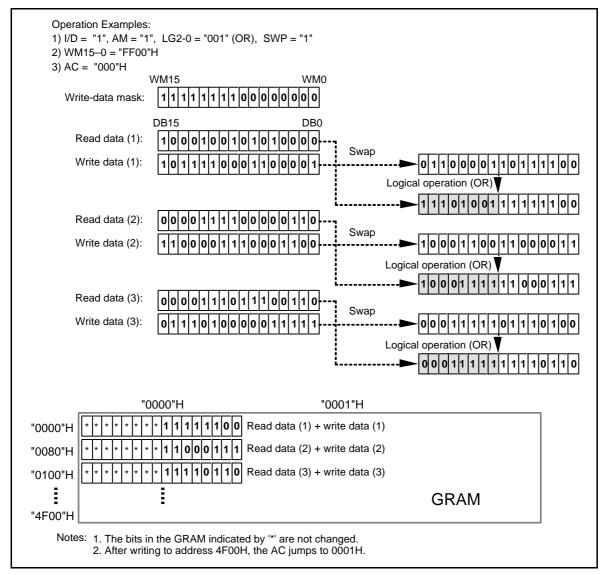


Figure 39 Writing Operation of Read/Write Mode 2

7. Read/Write mode 3: AM = 0, LG2-0 = 100/101

This mode is used when the data is horizontally written by comparing the original data and the set value of compare register (CP7–0). It reads the display data (original data), which has already been written in the GRAM, compares the original data and the set value of the compare register in byte units, and writes the data sent from the microcomputer to the GRAM only when the result of the comparison satisfies the condition. This mode reads the data during the same access-pulse width (68-system: enabled high level, 80-system: RD* low level) as write operation since reading the original data does not latch the read data into the microcomputer but temporarily holds it in the read-data latch. However, the bus cycle requires the same time as the read operation. The swap function (SWP) and write-data mask function (WM15–0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and automatically jumps to the counter edge one-raster-row below after it has reached the left or right edges of the GRAM.

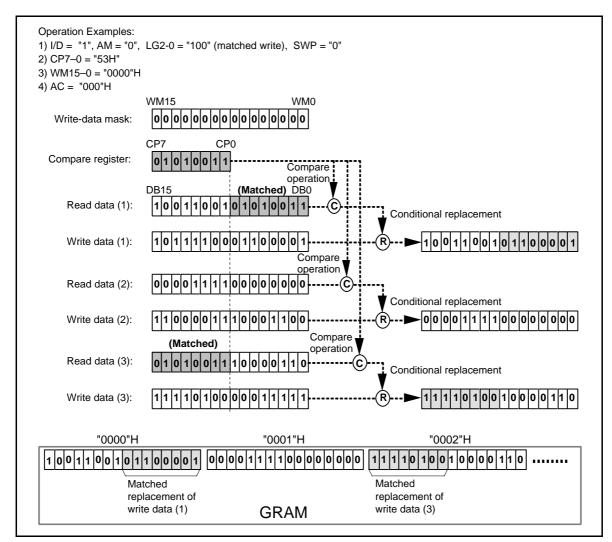


Figure 40 Writing Operation of Read/Write Mode 3

8. Read/Write mode 4: AM = 1, LG2–0 = 100/101

This mode is used when the data is vertically written by comparing the original data and the set value of the compare register (CP7–0). It reads the display data (original data), which has already been written in the GRAM, compares the original data and the set value of the compare register in byte units, and writes the data sent from the microcomputer to the GRAM only when the result of the compare operation satisfies the condition. This mode reads the data during the same access-pulse width (68-system: enabled high level, 80-system: RD* low level) as the write operation since reading the original data does not latch the read data into the microcomputer but temporarily holds it in the read-data latch. However, the bus cycle requires the same time as the read operation. The swap function (SWP) and write-data mask function (WM15–0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D = 1) or upper-left edge (I/D = 0) following the I/D bit after it has reached the lower edge of the GRAM.

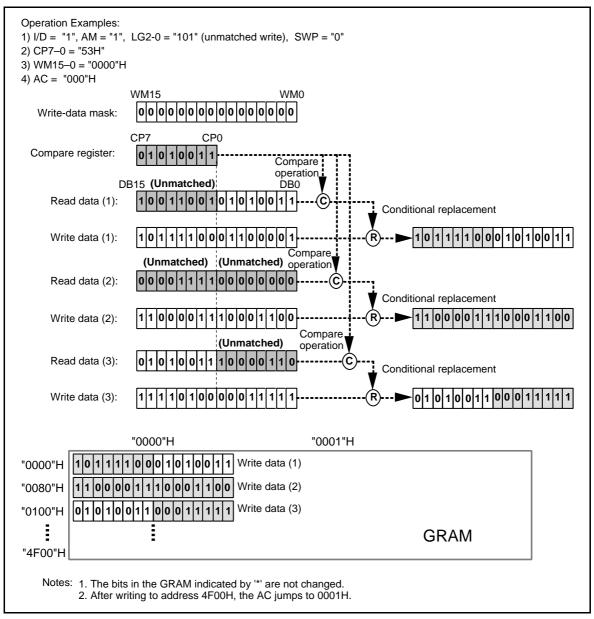


Figure 41 Writing Operation of Read/Write Mode 4

Grayscale Palette

The HD66761 incorporates a grayscale palette to simultaneously display 256 of the 4,096 possible colors. The R and G grayscales consist of eight four-bit palettes, and the B grayscale consists of four four-bit palettes. The 16-stage grayscale levels can be selected from the four-bit palette data.

For the display data of R and G, the three-bit data in the GRAM written from the microcomputer is used. For the display data of B, the two-bit data in the GRAM is used.

In this palette, a curtailed frame grayscale system, which has low charging current in the LCD panel, is used. Although the system is the same for each color, the curtailed frame timing is adjusted between adjacent dots to reduce flickering.

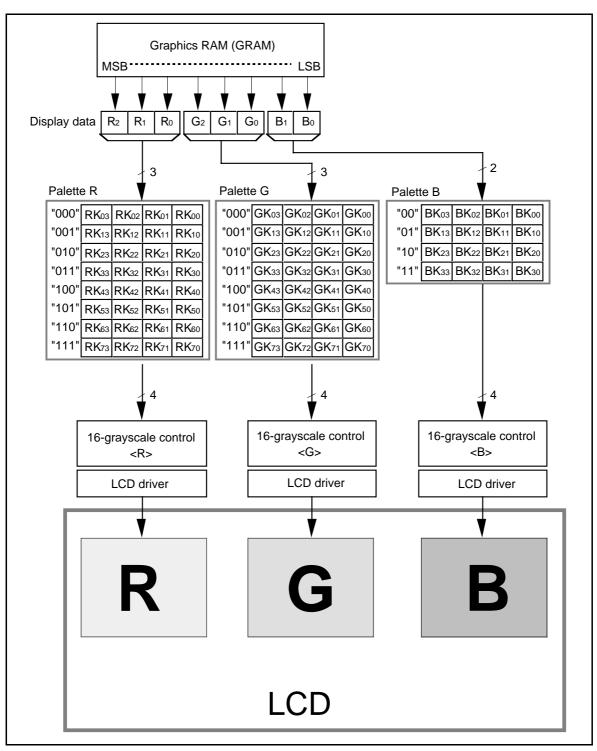


Figure 42 Grayscale Palette Control

Grayscale Palette Table

The grayscale register that is set for each palette register (RK, GK, or BK) can be set to any level. 16-grayscale lighting levels can be set according to palette values (0000 to 1111).

Table 32	Grayscale Control Level
----------	--------------------------------

Palette F	Register Value (R	K, GK, or BK)		Grayscale Control Level
0	0	0	0	Unlit level ^{*1}
0	0	0	1	2/16 level
0	0	1	0	3/16 level
0	0	1	1	4/16 level
0	1	0	0	5/16 level
0	1	0	1	6/16 level
0	1	1	0	7/16 level
0	1	1	1	8/16 level
1	0	0	0	9/16 level
1	0	0	1	10/16 level
1	0	1	0	11/16 level
1	0	1	1	12/16 level
1	1	0	0	13/16 level
1	1	0	1	14/16 level
1	1	1	0	15/16 level
1	1	1	1	All-lit level ^{*2}

Notes: 1. The unlit level corresponds to a black display when a normally-black color-LCD panel is used, and a white display when a normally-white color-LCD panel is used.

2. The all-lit level corresponds to a white display when a normally-black color-LCD panel is used, and a black display when a normally-white color-LCD panel is used.

Four-color Display Mode

The HD66761 has the four-color display mode consisting of two-bit-per-pixel data. Since the byte-wise processing of four-pixel display data is enabled, the processing performance is four times that of the normal 256-color display. When the internal grayscale palette is used, four colors of the possible 4,096 colors can be displayed at the same time. The two-bit display data in the GRAM written from the microcomputer is assigned to the lower two bits of R and G; one of these bits, always 0, synthesizes the three-bit data. Therefore, this display mode uses 000, 001, 010, 011 in grayscale palettes R and G.

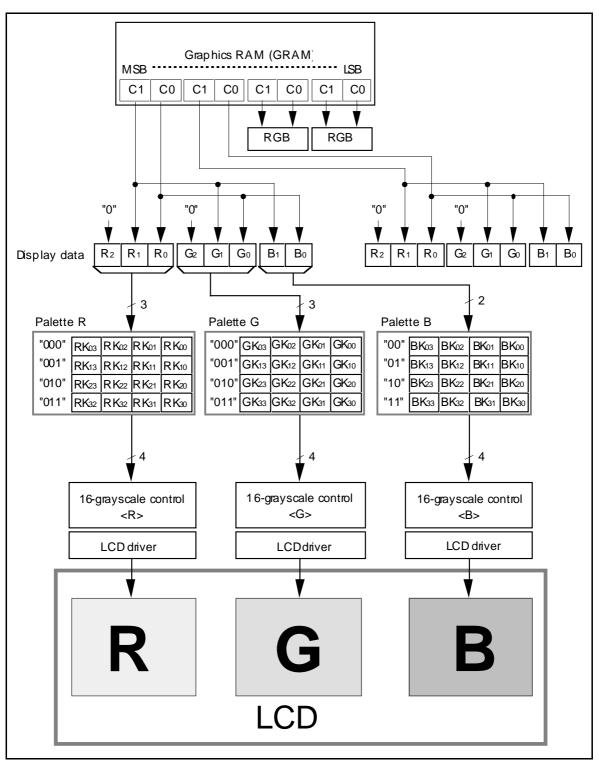


Figure 43 Four-color Display Control

Color Window Cursor Control

A cursor is displayed in the window area specified by the cursor-start position register (CSX or CSY) and cursor-end position register (CEX or CEY). The cursor display mode can be selected from four types in table 33 by changing cursor-mode bit (CM1–0).

The eight-color cursor display can be selected by the cursor-color bit (CR, CG, or CB) and displays red, blue, green, white, black or a combined color. However, the grayscale of the cursor color cannot be controlled.

Regi	ster Set	ting	
С	CM1	CM0	Cursor Display Control
0	*	*	Displays no cursor.
1	0	0	Displays eight colors specified by the cursor-color bit (CR, CG, or CB) in the window area.
1	0	1	Reverses and displays the four-bit grayscale data of each color in the window area.
1	1	0	Alternately repeats the normal display in the window area and the eight-color display specified by the cursor-color bit (CR, CG, or CB) every 32 frame for blinking display.
1	1	1	Alternately repeats the normal display in the window area and the reversal display of the four-bit grayscale data every 32 frame for blinking display.

Table 33Cursor Display Control

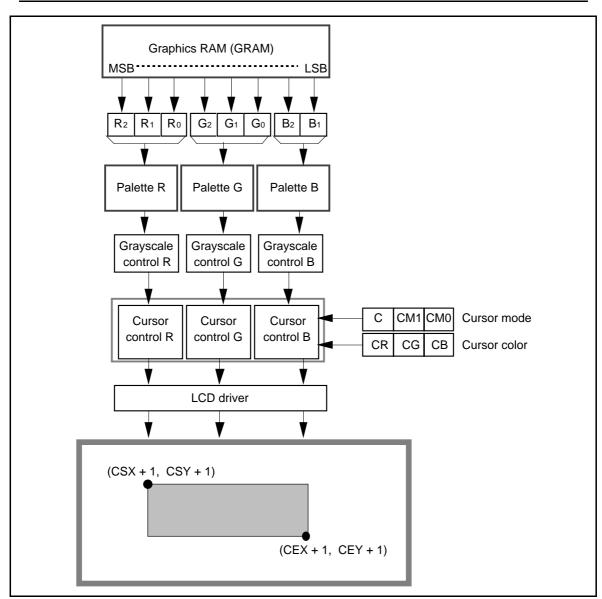


Figure 44 Color-cursor Display

Oscillation Circuit

The HD66761 can oscillate between the OSC1 and OSC2 pins on the master side using an internal R-C oscillator with an external oscillation resistor. The oscillation clock output from the CL2 pin on the master side is input to the CL2 pin on the slave side. Note that in R-C oscillation, the oscillation frequency is changed according to the external resistance value, wiring length, or operating power-supply voltage. If Rf is increased or power supply voltage is decrease, the oscillation frequency decreases. For the relationship between Rf resistor value and oscillation frequency, see the Electric Characteristics Notes section.

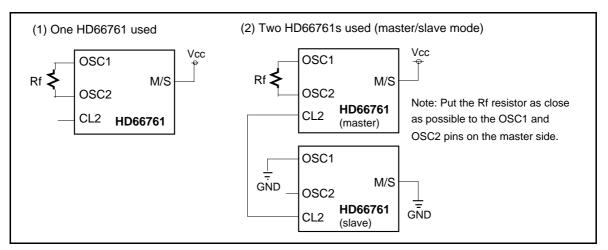


Figure 45 Oscillation Circuits

Table 34 Relationship between Liquid Crystal Drive Duty Ratio and Frame Frequency

LCD Duty	NL4–0 Set Value	Recommended Drive Bias Value	Frame Frequency	One-frame Clock
1/16	01H	1/5	70 Hz	2560
1/24	02H	1/6	70 Hz	2560
1/32	03H	1/6	70 Hz	2568
1/40	04H	1/7	70 Hz	2560
1/48	05H	1/8	71 Hz	2544
1/56	06H	1/8	70 Hz	2576
1/64	07H	1/9	70 Hz	2560
1/72	08H	1/9.5	71 Hz	2520
1/80	09H	1/10	70 Hz	2560

Note: The frame frequency above is for 180-kHz operation and proportions the oscillation frequency (fosc).

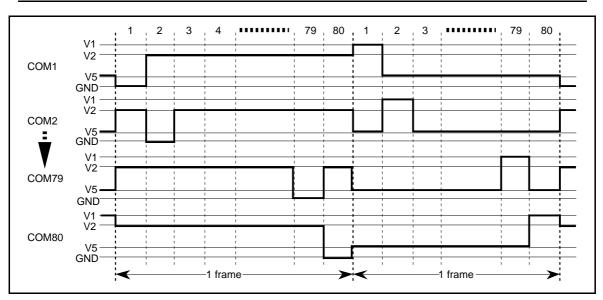


Figure 46 LCD Drive Output Waveform (B-pattern AC Drive with 1/80 Multiplexing Duty Ratio)

Multi-chip Operation

The HD66761 can extend the display size up to 128 (RGB)-by-160 dots by using two chips and vertically driving two screens. The chip on the master side generates the R-C oscillating frequency or step-up output voltage and adjusts contrast by electron volume. The display on/off is controlled on both the master and slave sides. After power is supplied to the master side, turn on the display on the slave side.

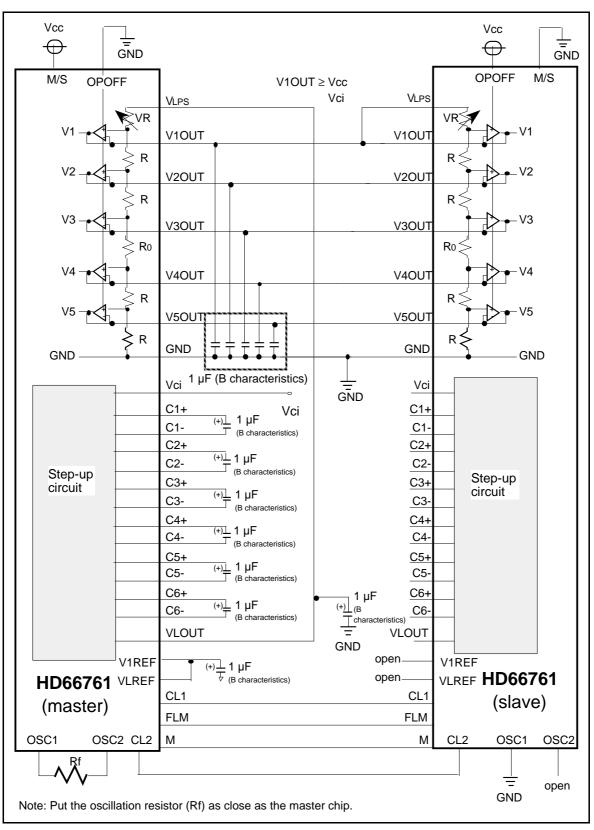


Figure 47 Multi-chip Configuration

Instruction Flow at Multi-chip Operation

The displays are turned on or off synchronously during multi-chip operation by a signal (M, FLM, CL1, or CL2) from the master to the slave. Turn the display on after synchronization because the blink and grayscale synchronize instruction synchronizes the blink cycle on the master/slave side with the grayscale-pattern generation cycle. When switching to standby, set the slave side to standby before the master side. After standby cancellation, stabilize the timing of the internal power supply and then turn the display on.

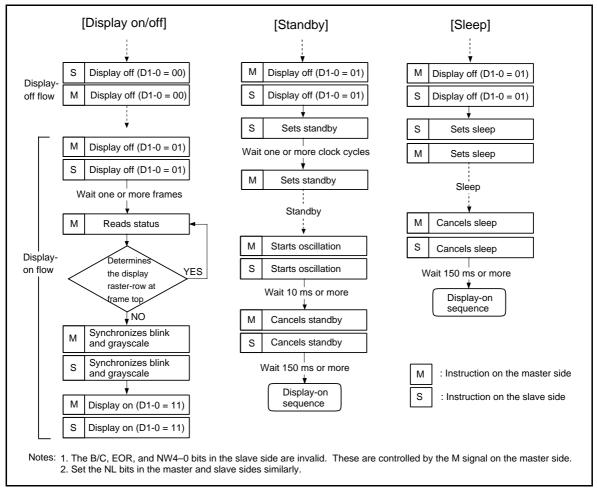


Figure 48 Instruction Flow

n-raster-row Reversed AC Drive

The HD66761 supports not only the LCD reversed AC drive in a one-frame unit (B-pattern waveform) but also the n-raster-row reversed AC drive which alternates in an n-raster-row unit from one to 32 raster-rows (C-pattern waveform). When a problem affecting display quality occurs, such as crosstalk at high-duty driving of more than 1/64 duty, the n-raster-row reversed AC drive (C-pattern waveform) can improve the quality. When two HD66761s are used in a master/slave setup, the LCD drive polarity on the master and slave sides is reversed.

Determine the number of raster-rows n (NW bit set value + 1) for alternating after confirmation of the display quality with the actual LCD panel. However, if the number of AC raster-rows is reduced, the LCD alternating frequency becomes high. Because of this, the charge or discharge current is increased in the LCD cells.

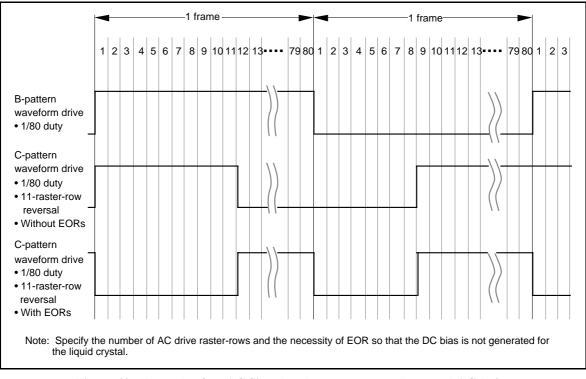


Figure 49 Example of an AC Signal under n-raster-row Reversed AC Drive

Liquid-crystal-display Drive-bias Selector

An optimum liquid-crystal-display bias value can be selected using the BS2-0 bits, according to the liquid crystal drive duty ratio setting (NL3-0 bits). The liquid-crystal-display drive duty ratio and bias value can be displayed while switching software applications to match the LCD panel display status. The optimum bias value calculated using the following expression is a logical optimum value. Driving by using a lower value than the optimum bias value provides lower logical contrast and lower liquid-crystal-display voltage (the potential difference between V1 and GND), which results in better image quality. When the liquid-crystal-display voltage is insufficient even if a seven-times step-up circuit is used, when the step-up driving ability is lowered by setting a high factor for the step-up circuit, or when the output voltage is lowered because the battery life has been reached, the display can be made easier to see by lowering the liquid-crystal-display bias.

The liquid crystal display can be adjusted by using the contrast adjustment register (CT6-0 bits) and selecting the step-up output level (BT1/0 bits).

Optimum bias value for 1/N duty ratio drive voltage = $\frac{1}{\sqrt{N} + 1}$

Table 35	Optimum Drive Bias Values
----------	----------------------------------

LCD drive duty ratio	1/80	1/72	1/64	1/56	1/48	1/40	1/32	1/24	1/16
(NL3-0 set value)	1001	1000	0111	0111	0111	0111	0100	0011	0010
Optimum drive bias value	1/10	1/9	1/9	1/8	1/8	1/7	1/6	1/6	1/5
(BS2-0 set value)	001	010	010	010	010	010	101	101	100

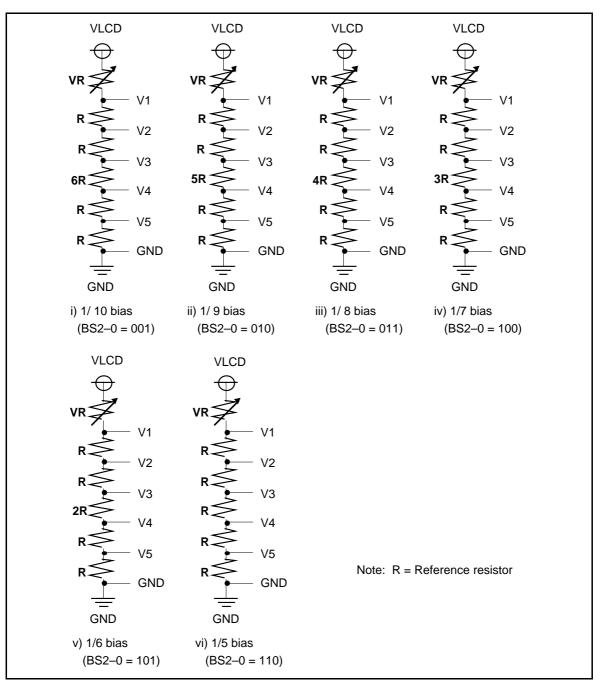


Figure 50 Liquid Crystal Display Drive Bias Circuit

Liquid Crystal Display Voltage Generator

When External Power Supply and Internal Operational Amplifiers are Used

To supply LCD drive voltage directly from the external power supply without using the internal step-up circuit, circuits should be connected as shown in figure 51. Here, contrast can be adjusted by software through the CT bits of the contrast adjustment register. Minimize the voltage variation since the VLREF input is a reference voltage that determines the LCD drive voltage.

The HD66761 incorporates a voltage-follower operational amplifier for each V1 to V5 to reduce current flowing through the internal bleeder-resistors, which generate different levels of liquid-crystal drive voltages. Thus, potential difference between V_{LPS} and V1 must be 0.1 V or higher, and that between V4 and GND must be 1.4 V or higher. Note that the OPOFF pin must be grounded when using the operational amplifiers. Place a capacitor of about 1 μ F (B characteristics) between each internal operational amplifier (V10UT to V50UT outputs) and GND and stabilize the output level of the operational amplifier. Adjust the capacitance value of the stabilized capacitor after the LCD panel has been mounted and the screen quality has been confirmed.

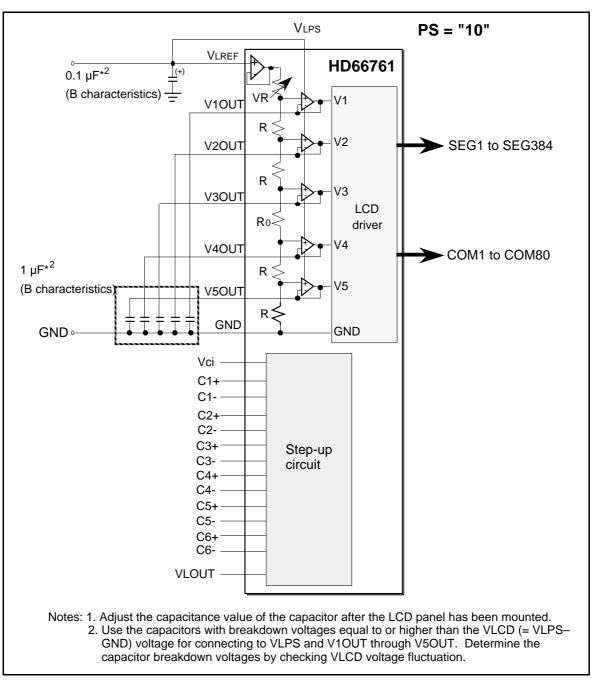


Figure 51 External Power Supply Circuit for LCD Drive Voltage Generation

When an Internal Booster and Internal Operational Amplifiers are Used

To supply LCD drive voltage using the internal VLCD regulator and step-up circuit, an internal booster and internal operational amplifiers should be connected as shown in figure 52. Keep the power-supply voltage (VLPS) of the operational amplifier higher than the output voltage (V1REF) of the VLCD regulator. Contrast can be adjusted through the CT bits of the contrast control instruction.

The HD66761 incorporates a voltage-follower operational amplifier for each of V1 to V5 to reduce current flowing through the internal bleeder-resistors, which generate different liquid-crystal drive voltages. Thus, potential difference between V_{LPS} and V1 must be 0.1 V or higher, and that between V4 and GND must be 1.4 V or higher. Note that the OPOFF pin must be grounded when using the operational amplifiers. Place a capacitor of about 1 μ F (B characteristics) between each internal operational amplifier (V10UT to V50UT outputs) and GND and stabilize the output level of the operational amplifier. Adjust the capacitance value of the stabilized capacitor after the LCD panel has been mounted and the screen quality has been confirmed.

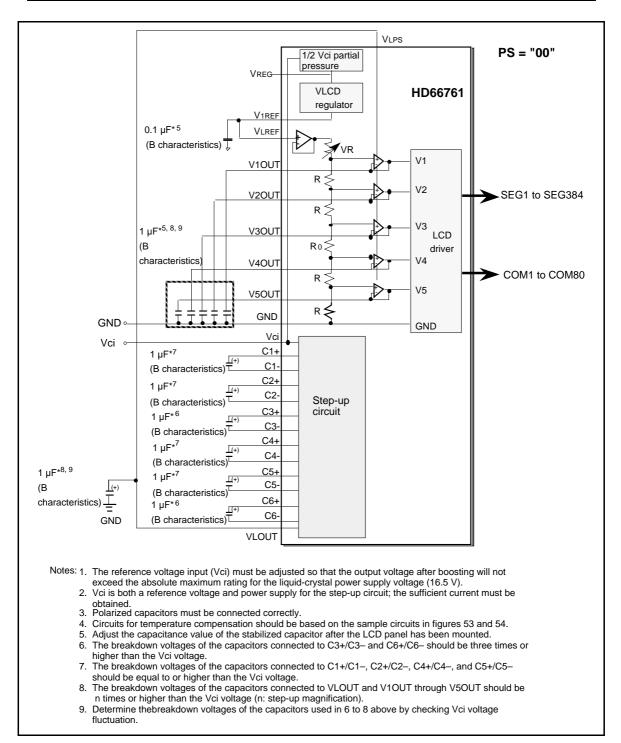


Figure 52 Internal Step-up Circuit for LCD Drive Voltage Generation

Temperature can be compensated either through the CT bits, by controlling the reference input voltage for the VLCD regulator (VREG pin) using a thermistor, or by controlling the reference output voltage of the VLCD regulator (V1REF pin).

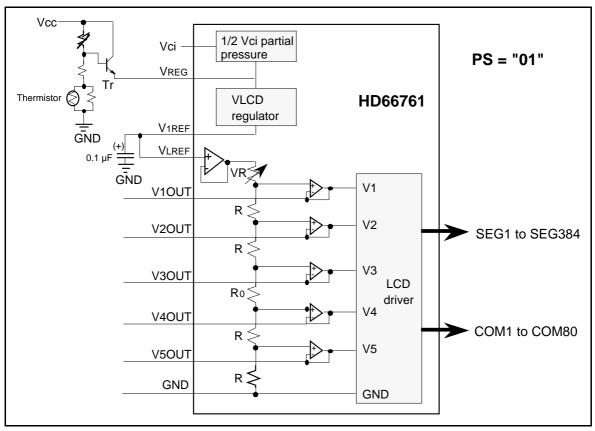


Figure 53 Temperature Compensation Circuits (1)

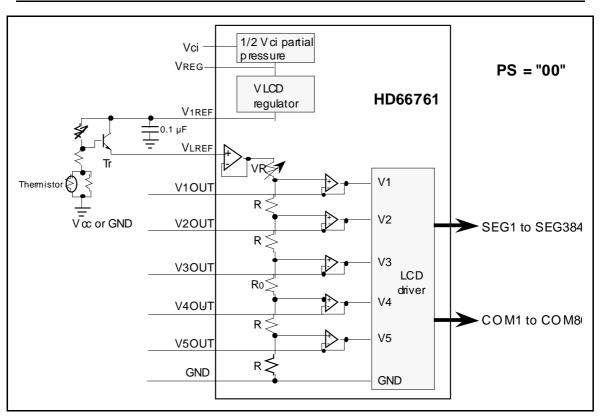


Figure 54 Temperature Compensation Circuits (2)

Switching the Step-up Factor

Instruction bits (BT1/0 bits) can optionally select the step-up factor of the internal step-up circuit. According to the display status, power consumption can be reduced by changing the LCD drive duty and the LCD drive bias, and by controlling the step-up factor for the minimum requirements. For details, see the Partial-display-on Function section.

According to the maximum step-up factor, external capacitors need to be connected. For example, when the maximum step-up is six times or five times, capacitors between C6+ and C6- or between C5+ and C5- are needed as in the case of the seven-times step-up.

Place a capacitor with a breakdown voltage of three times or more the Vci-GND voltage between C6+ and C6– and between C3+ and C3–, a capacitor with a breakdown voltage larger than the Vci-GND voltage between C1+ and C1–, C2+ and C2–, C4+ and C4–, and C5+ and C5–, and a capacitor with a breakdown voltage of n times or more the Vci-GND voltage to VLOUT (n: step-up factor) (see figure 55).

Note: Determine the capacitor breakdown voltages by checking Vci voltage fluctuation.

BT1	BT0	VLOUT Output Status
0	0	Four-times step-up output
0	1	Five-times step-up output
1	0	Six-times step-up output
1	1	Seven-times step-up output

Table 36VLOUT Output Status

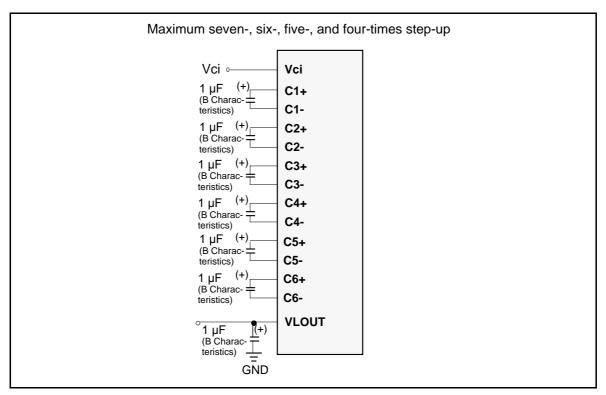


Figure 55 Step-up Circuit Output Factor Switching

Example of Power-supply Voltage Generator for More Than Seven-times Step-up Output

The HD66761 incorporates a step-up circuit for up to seven-times step-up. However, the LCD drive voltage (VLCD) will not be enough for seven-times step-up from Vcc when the power-supply voltage of Vcc is low or when the LCD drive voltage is high for the high-contrast LCD display. In this case, the reference voltage (Vci) for step-up can be set higher than the power-supply voltage of Vcc.

Set the Vci input voltage for the step-up circuit to 3.6 V or less within the range of Vcc + 1.0 V. Control the Vci voltage so that the step-up output voltage (VLOUT) should be less than the absolute maximum ratings (16.5 V).

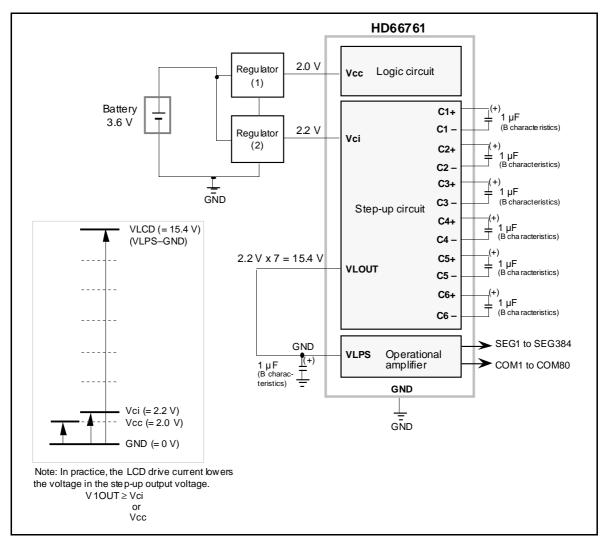


Figure 56 Usage Example of Step-up Circuit at Vci > Vcc

Restrictions on the 1st/2nd Screen Driving Position Register Settings

The following restrictions must be satisfied when setting the start line (SS16-10) and end line (SE16-10) of the 1st screen driving position register (R14) and the start line (SS26-20) and end line (SE26-20) of the 2nd screen driving position register (R15) for the HD66761. Note that incorrect display may occur if the restrictions are not satisfied.

Table 37	Restrictions on the 1st/2nd Screen Driving Position Register Settings

	1st Screen Driving (STP = 0)	2nd Screen Driving (STP = 1)
Register setting	$SS16-10 \leq SE16-0 \leq 4FH$	SS16-10 ≤ SE16-10 < SS26-20 ≤ SE26-20 ≤ 4FH
Display operation	 Time-sharing driving for COM pins (SS1+1) to (SE1+1) Non-selection level driving for others 	 Time-sharing driving for COM pins (SS1+1) to (SE1+1) and (SS2+1) to (SE2+1) Non-selection level driving for others

Notes: 1. When the total line count in screen division driving settings is less than the duty setting, nonselection level driving is performed without the screen division driving setting range.

2. When the total line count in screen division driving settings is larger than the duty setting, the start line, the duty-setting line, and the lines between them are displayed and non-selection level driving is performed for other lines.

3. For the 1st screen driving, the SS26-20 and SE26-20 settings are ignored.

Sleep Mode

Setting the sleep mode bit (SLP) to 1 puts the HD66761 in the sleep mode, where the device stops all internal display operations, thus reducing current consumption. Specifically, LCD operation is completely halted. Here, all the SEG (SEG1 to SEG384) and COM (COM1 to COM132) pins output the GND level, resulting in no display. If the AP1-0 bits in the power control register are set to 00 in the sleep mode, the LCD drive power supply can be turned off, reducing the total current consumption of the LCD module.

Since master/slave signals (M, FLM, CL1, and CL2) are stopped during multi-chip operation, set the sleep mode on the slave side.

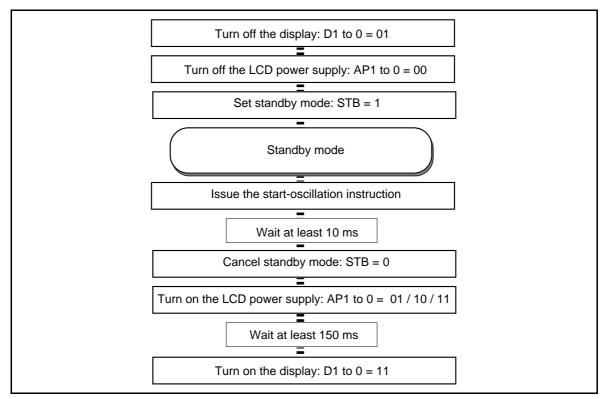

Function	Sleep Mode (SLP = 1)	Standby Mode (STB = 1)
LCD control	Turned off	Turned off
R-C oscillation circuit	Operates normally	Operation stopped
Master/slave signal	Stopped	Stopped

 Table 38
 Comparison of Sleep Mode and Standby Mode

Standby Mode

Setting the standby mode bit (STB) to 1 puts the HD66761 in the standby mode, where the device stops completely, halting all internal operations including the R-C oscillation circuit, thus further reducing current consumption compared to that in the sleep mode. Specifically, all the SEG (SEG1 to SEG384) and COM (COM1 to COM80) pins for the time-sharing drive output the GND level, resulting in no display. If the AP1-0 bits are set to 00 in the standby mode, the LCD drive power supply can be turned off.

During the standby mode, no instructions can be accepted other than the start-oscillation instruction. To cancel the standby mode, issue the start-oscillation instruction to stabilize R-C oscillation before setting the STB bit to 0.

During multi-chip operation, set the standby mode on the slave side.

Figure 58 Procedure for Setting and Canceling Standby Mode

Power-on/off Sequence

To prevent pulse lighting of LCD screens at power-on/off, the power-on/off sequence is activated as shown below. However, since the sequence depends on LCD materials to be used, confirm the conditions by using your own system.

Power-on Sequence

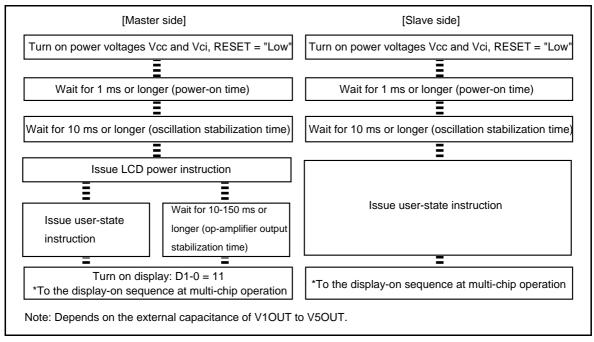


Figure 59 Power-on Sequence

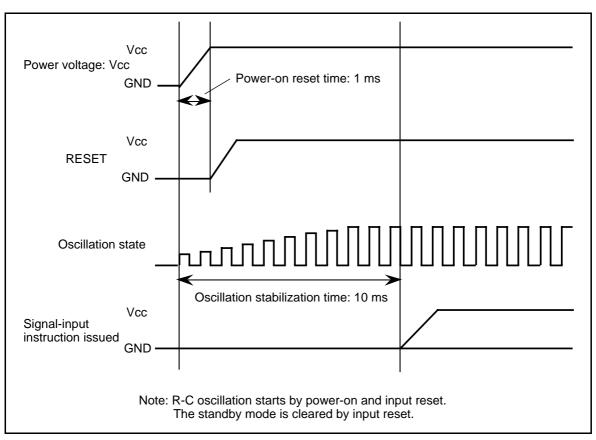


Figure 60 Power-on Timing

Power-off Sequence

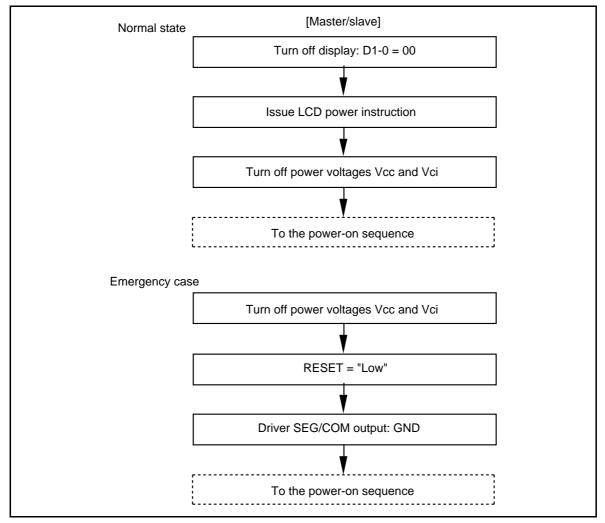


Figure 61 Power-off Sequence

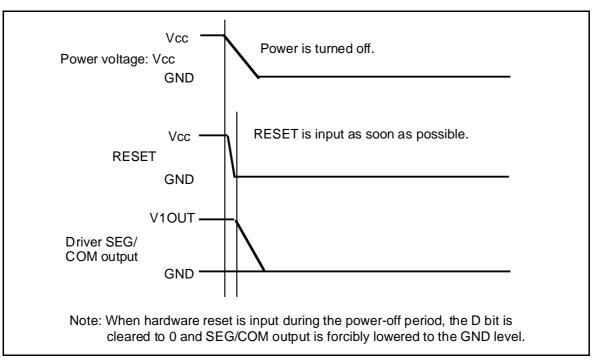


Figure 62 Power-off Timing

Absolute Maximum Ratings

Item	Symbol	Unit	Value	Notes*
Power supply voltage (1)	V _{cc}	V	–0.3 to +4.6	1, 2
Power supply voltage (2)	$V_{\text{LCD}} - GND$	V	–0.3 to +16.5	1, 3
Input voltage	Vt	V	–0.3 to V _{cc} + 0.3	1
Operating temperature	Topr	°C	-40 to +85	1, 4
Storage temperature	Tstg	°C	–55 to +110	1, 5

Notes: 1. If the LSI is used above these absolute maximum ratings, it may become permanently damaged. Using the LSI within the following electrical characteristics limits is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability.

- 2. VCC \geq GND must be maintained.
- 3. VLCD \geq GND must be maintained.

4. For bare die and wafer products, specified up to 85°C.

5. This temperature specifications apply to the TCP package.

Item	Symbol	Min	Тур	Max	Unit	Test Condition	Notes
Input high voltage	V _{IH}	$0.7 \ V_{cc}$		V _{cc}	V	V_{cc} = 2.2 to 3.6 V	2, 3
Input low voltage	V _{IL}	-0.3		$0.15 \ V_{cc}$	V	V_{cc} = 2.2 to 3.6 V	2, 3
Output high voltage (1) (DB0-15 pins)	V _{OH1}	$0.75 \ V_{cc}$	—	—	V	I _{он} = -0.1 mA	2
Output low voltage (1) (DB0-15 pins)	V_{OL1}	_	_	$0.2 \ V_{cc}$	V	$V_{cc} = 2.2 \text{ to } 2.4 \text{ V},$ $I_{oL} = 0.1 \text{ mA}$	2
		_	_	0.15 V _{cc}	V	$V_{cc} = 2.4 \text{ to } 3.6 \text{ V},$ $I_{oL} = 0.1 \text{ mA}$	2
Driver ON resistance (COM pins)	R_{COM}	_	3	10	kΩ	$\pm Id = 0.05 \text{ mA},$ V _{LCD} = 10 V	4
Driver ON resistance (SEG pins)	R_{seg}	_	3	10	kΩ	$\pm Id = 0.05 \text{ mA},$ V _{LCD} = 10 V	4
I/O leakage current	I _{Li}	-1		1	μA	Vin = 0 to V_{cc}	5
Current consumption during normal operation $(V_{cc} - GND)$	I _{OP}	_	T.B.D.	T.B.D.	μA		6, 7
Current consumption during sleep mode $(V_{cc} - GND)$	I _{SL}	_	T.B.D.	_	μA		6, 7
Current consumption during standby mode $(V_{cc} - GND)$	I _{ST}	_	T.B.D.	T.B.D.	μA	V _{cc} = 3 V, Ta = 25°C	6, 7
LCD drive power supply current (V _{LPS} – GND)	ILCD	_	T.B.D.	T.B.D.	μA		7
LCD drive voltage (V _{LPS} – GND)	V_{LCD}	5.0	—	15.5	V		8
VREG input voltage (VREG pin)	V_{REG}	T.B.D.	T.B.D.	T.B.D.	V		
V1REF output voltage (V1REF pin)	$V_{1\text{REF}}$	T.B.D.	T.B.D.	T.B.D.	V		

DC Characteristics (V $_{\rm CC}$ = 2.2 to 3.6 V, Ta = –40 to +85°C*1)

Note: For the numbered notes, refer to the Electrical Characteristics Notes section following these tables.

Step-up	Circuit	Characteristics
---------	---------	-----------------

ltem	Symbol	Min	Тур	Max	Unit	Test Condition	Notes
Four-times step- up output voltage (VLOUT pin)	V_{UP4}	10.3	10.6	10.8	V	$V_{cc} = Vci = 2.7 V,$ $I_o = 30 \ \mu A, C = 1 \ \mu F,$ $f_{osc} = 180 \ kHz, Ta = 25^{\circ}C$	11
Five-times step- up output voltage (VLOUT pin)	V_{UP5}	13	13.3	13.5	V	$V_{cc} = Vci = 2.7 V,$ $I_{o} = 30 \ \mu A, C = 1 \ \mu F,$ $f_{osc} = 180 \ kHz, Ta = 25^{\circ}C$	11
Six-times step-up output voltage (VLOUT pin)	V _{UP6}	12.7	12.9	13.2	V		11
Seven-times step-up output voltage (VLOUT pin)	V _{UP7}	13.9	15.1	15.4	V	$V_{cc} = Vci = 2.2 V,$ $I_{o} = 30 \ \mu A, C = 1 \ \mu F,$ $f_{osc} = 180 \ \text{kHz}, Ta = 25^{\circ}\text{C}$	11
Use range of step-up output voltages	V _{UP4} V _{UP5} V _{UP6} V _{UP7}	Vcc	_	15.5	V	For four- to seven-times step-up	11

Note: For the numbered notes, refer to the Electrical Characteristics Notes section following these tables.

AC Characteristics (V $_{\rm CC}$ = 2.2 to 3.6 V, Ta = –40 to +85°C*1)

Item	Symbol	Min	Тур	Max	Unit	Test Condition	Notes
External clock frequency	fcp	T.B.D.	180	T.B.D.	kHz	V_{cc} = 2.2 to 3.6 V	9
External clock duty ratio	Duty	45	50	55	%	V_{cc} = 2.2 to 3.6 V	9
External clock rise time	trcp	—	—	0.2	μs	V_{cc} = 2.2 to 3.6 V	9
External clock fall time	tfcp	—	—	0.2	μs	V_{cc} = 2.2 to 3.6 V	9
R-C oscillation clock	f _{osc}	T.B.D.	180	T.B.D.	kHz	$ \begin{array}{l} Rf = \ k\Omega, \\ V_{CC} = 3 \ V \end{array} $	10

Clock Characteristics (V_{CC} = 2.2 to 3.6 V)

Note: For the numbered notes, refer to the Electrical Characteristics Notes section following these tables.

68-system Bus Interface Timing Characteristics

(Vcc = 2.2 to 2.4 V)

Item		Symbol	Min	Тур	Max	Unit	Test Condition
Enable cycle time	Write	t _{CYCE}	600	_	_	ns	Figure 70
	Read	t _{CYCE}	800	_	_		
Enable high-level pulse width	Write	PW_{EH}	120	_	_	ns	Figure 70
	Read	PW_{EH}	350	_	_	_	
Enable low-level pulse width	Write	PW_{EL}	300	_	_	ns	Figure 70
	Read	PW_{EL}	400	—	_	-	
Enable rise/fall time		$t_{\rm Er},t_{\rm Ef}$		—	25	ns	Figure 70
Setup time (RS, R/W to E, CS*)		t_{ASE}	50	_	_	ns	Figure 70
Address hold time		t _{AHE}	20	_	_	ns	Figure 70
Write data setup time		t_{DSWE}	60	_	_	ns	Figure 70
Write data hold time		t _{HE}	20	_	_	ns	Figure 70
Read data delay time		t _{DDRE}		_	300	ns	Figure 70
Read data hold time		\mathbf{t}_{DHRE}	5	_	_	ns	Figure 70

(Vcc = 2.4 to 3.6 V)

Item		Symbol	Min	Тур	Max	Unit	Test Condition
Enable cycle time	Write	t _{CYCE}	300	—	_	ns	Figure 70
	Read	t _{CYCE}	500	—	_		
Enable high-level pulse width	Write	PW_{EH}	70	_	_	ns	Figure 70
	Read	PW_{EH}	250	_	_		
Enable low-level pulse width	Write	PW_{EL}	100	—	_	ns	Figure 70
	Read	PW_{EL}	200	_	_		
Enable rise/fall time		$t_{\rm Er},t_{\rm Ef}$	_	_	25	ns	Figure 70
Setup time (RS, R/W to E, CS*)		t _{ASE}	50	_	_	ns	Figure 70
Address hold time		t _{AHE}	5	_	_	ns	Figure 70
Write data setup time		\mathbf{t}_{DSWE}	60	_	_	ns	Figure 70
Write data hold time		t _{HE}	15	—	_	ns	Figure 70
Read data delay time		t _{DDRE}	—	—	200	ns	Figure 70
Read data hold time		t _{DHRE}	5	—	_	ns	Figure 70

80-system Bus Interface Timing Characteristics

(Vcc = 2.2 to 2.4 V)

Item		Symbol	Min	Тур	Max	Unit	Test Condition
Bus cycle time	Write	t _{CYCW}	600	_	—	ns	Figure 71
	Read	t _{CYCR}	800	_	_	ns	Figure 71
Write low-level pulse width		PW_{LW}	120	_	_	ns	Figure 71
Read low-level pulse width		PW_{LR}	350	_	_	ns	Figure 71
Write high-level pulse width		PW_{HW}	300	_	_	ns	Figure 71
Read high-level pulse width		PW_{HR}	400	_	—	ns	Figure 71
Write/Read rise/fall time		$t_{_{WRr}}$, $_{_{WRf}}$	—	_	25	ns	Figure 71
Setup time (RS to CS*, WR*, RD*)		t _{AS}	50	_	_	ns	Figure 71
Address hold time		t _{AH}	20	_	—	ns	Figure 71
Write data setup time		t _{DSW}	60	_	—	ns	Figure 71
Write data hold time		t _H	20	_	—	ns	Figure 71
Read data delay time		t_{DDR}	_	_	300	ns	Figure 71
Read data hold time		t _{DHR}	5	_	_	ns	Figure 71
Read data delay time		\mathbf{t}_{DDR}	_	_ _	 300 	ns	Figure 71

(Vcc = 2.4 to 3.6 V)

Item		Symbol	Min	Ту	γp	Max	Unit	Test Condition
Bus cycle time	Write	t _{CYCW}	300				ns	Figure 71
	Read	t _{CYCR}	500				ns	Figure 71
Write low-level pulse width		PW_{LW}	70				ns	Figure 71
Read low-level pulse width		PW_{LR}	250				ns	Figure 71
Write high-level pulse width		PW_{HW}	100	_			ns	Figure 71
Read high-level pulse width		$PW_{_{HR}}$	200				ns	Figure 71
Write/Read rise/fall time		$t_{_{WRr, WRf}}$	_			25	ns	Figure 71
Setup time (RS to CS*, WR*, RD*)		t _{AS}	50				ns	Figure 71
Address hold time		t _{AH}	5				ns	Figure 71
Write data setup time		\mathbf{t}_{DSW}	60				ns	Figure 71
Write data hold time		t _H	15				ns	Figure 71
Read data delay time		\mathbf{t}_{DDR}	_			200	ns	Figure 71
Read data hold time		\mathbf{t}_{DHR}	5				ns	Figure 71

Reset Timing Characteristics (V_{CC} = 2.2 to 3.6 V)

ltem	Symbol	Min	Тур	Max	Unit	Test Condition
Reset low-level width	t _{RES}	1	_	—	ms	Figure 72

Electrical Characteristics Notes

- 1. For bare die and wafer products, specified up to 85°C.
- 2. The following three circuits are I/O pin configurations (figure 63).

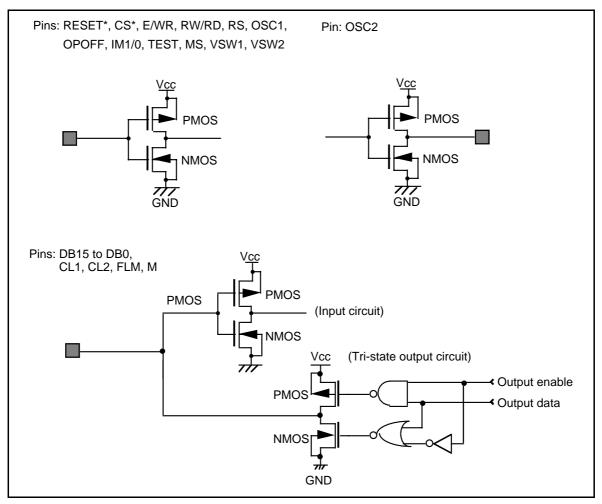


Figure 63 I/O Pin Configuration

- 3. The TEST, VSW1, and VSW2 pins must be grounded and the IM1/0, OPOFF, and MS pins must be grounded or connected to Vcc.
- 4. Applies to the resistor value (RCOM) between power supply pins V1OUT, V2OUT, V5OUT, GND and common signal pins, and resistor value (RSEG) between power supply pins V1OUT, V3OUT, V4OUT, GND and segment signal pins.
- 5. This excludes the current flowing through output drive MOSs.
- 6. This excludes the current flowing through the input/output units. The input level must be fixed high or low because through current increases if the CMOS input is left floating. Even if the CS pin is low or high when an access with the interface pin is not performed, current consumption does not change.
- 7. The following shows the relationship between the operation frequency (fosc) and current consumption (Icc) (figure 64).

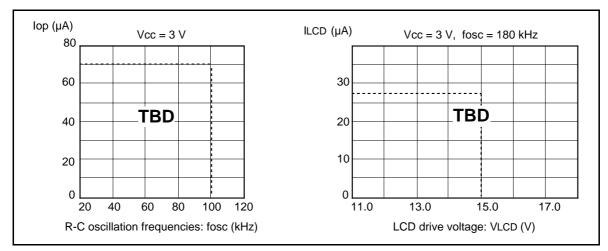


Figure 64 Relationship between the Operation Frequency and Current Consumption

- 8. Each COM and SEG output voltage is within ±0.15 V of the LCD voltage (Vcc, V1, V2, V3, V4, V5) when there is no load.
- 9. Applies to the external clock input (figure 65).

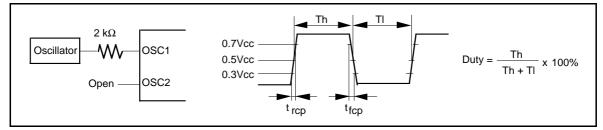
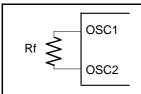



Figure 65 External Clock Supply

10. Applies to the internal oscillator operations using external oscillation resistor Rf (figure 66 and table 39).

Since the oscillation frequency varies depending on the OSC1 and OSC2 pin capacitance, the wiring length to these pins should be minimized.

Figure 66 Internal Oscillation

Table 39 External Resistance Value and R-C Oscillation Frequency (Referential Data)

External	R-C Oscillation Frequency: fosc								
Resistance (Rf)	Vcc = 2.2 V	Vcc = 3.0 V	Vcc = 3.6 V						
200 kΩ									
270 kΩ									
300 kΩ									
330 kΩ									
360 kΩ									
390 kΩ									
430 kΩ									
470 kΩ									

11. The step-up characteristics test circuit is shown in figure 67.

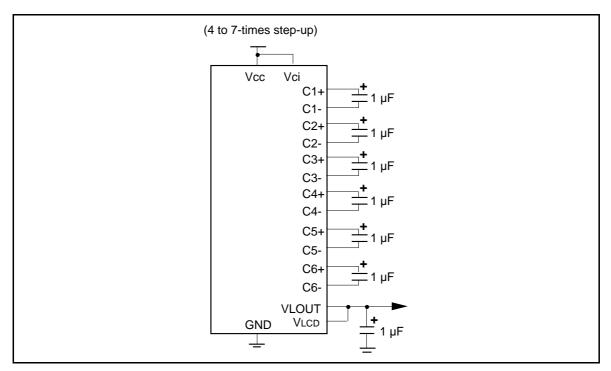


Figure 67 Step-up Characteristics Test Circuit

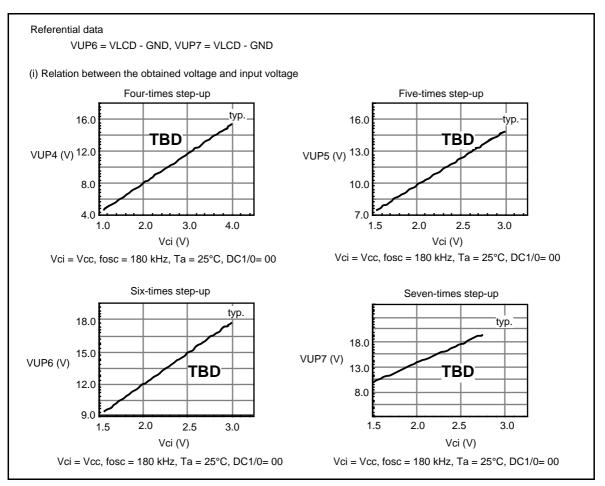


Figure 68 Step-up

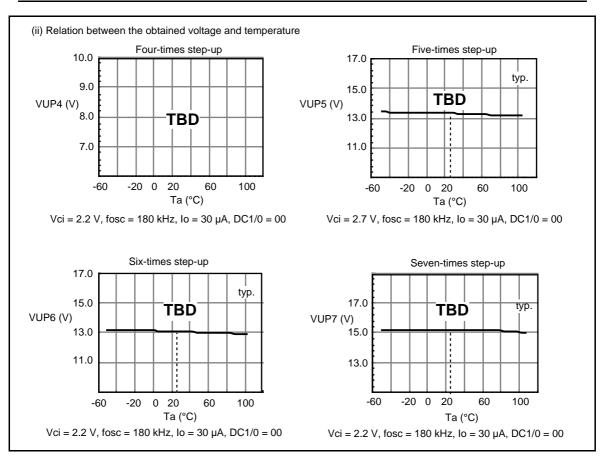


Figure 68 Step-up (cont)

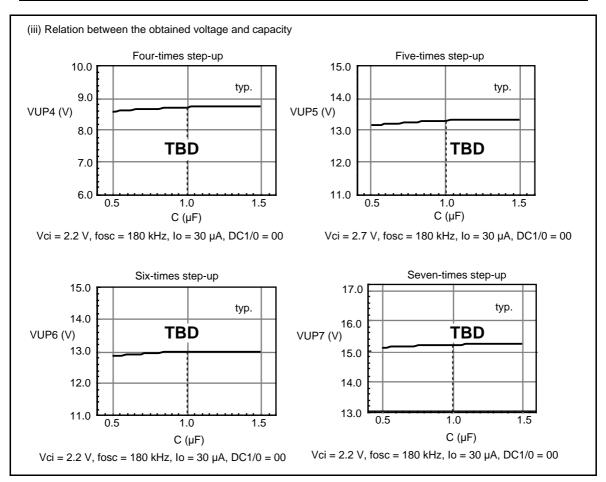


Figure 68 Step-up (cont)

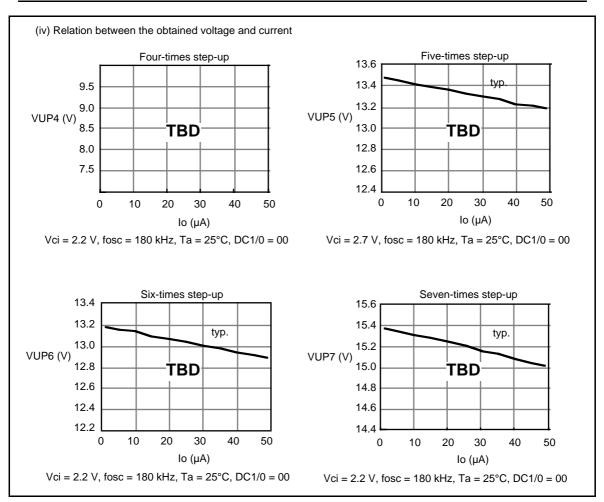


Figure 68 Step-up (cont)

Load Circuits

AC Characteristics Test Load Circuits

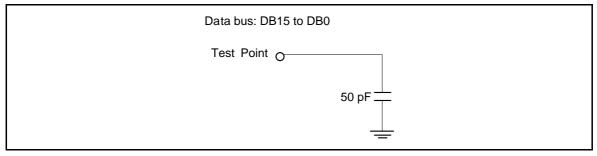


Figure 69 Load Circuit

Timing Characteristics

68-system Bus Operation

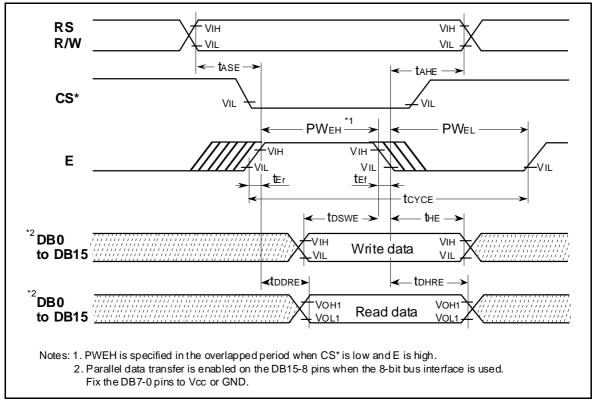


Figure 70 68-system Bus Timing

80-system Bus Operation

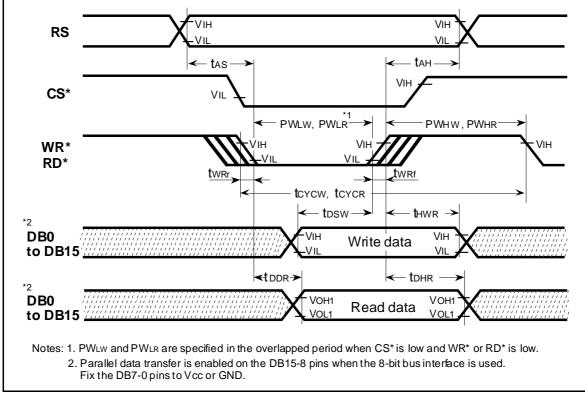
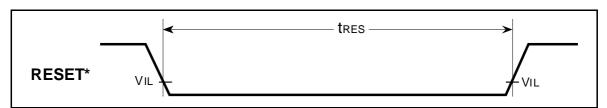



Figure 71 80-system Bus Timing

Reset Operation

Figure 72 Reset Timing

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All right reserved: No one is permitted to reproduce or duplicated, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party of Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.