

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

www.infineon.com

Ultra Low Power, BLE/BR/EDR Bluetooth 5.0 SoC

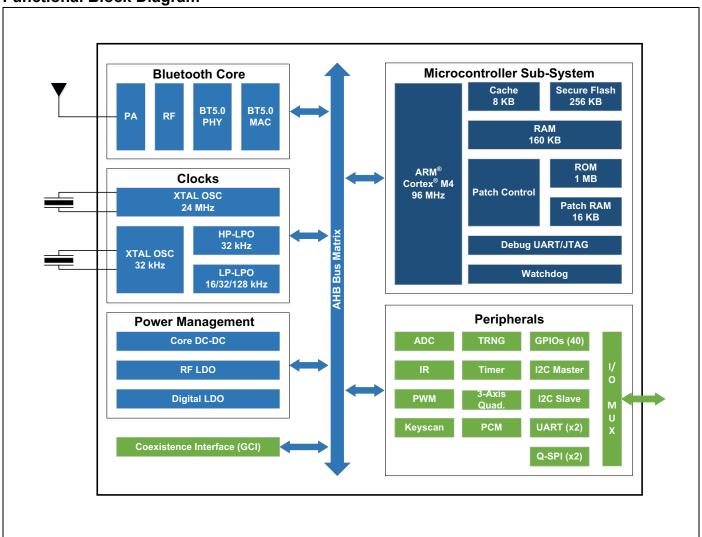
The CYW20819 is a Bluetooth 5 single-chip solution targeted at Bluetooth Mesh, audio, voice, wearables, mice, keyboards, gaming consoles, remote controls, home automation, and a wide range of other Internet of Things (IoT) applications. The CYW20819 fully implements the Bluetooth Mesh 1.0 specification, and employs the highest level of integration to eliminate external components, allowing device makers to reduce product footprints and decrease overall system costs.

The CYW20819 integrates Ultra-Low Power (ULP) BLE along with the capability to add audio functionality to enhance the user experience for wearables and trackers. It also provides best-in-class receiver sensitivity for both BLE and EDR. Using advanced design techniques and process technology to reduce active and idle power, the CYW20819 also addresses the needs of a diverse class of low power Bluetooth 5-enabled devices that require minimal power consumption and compact size The device is intended for use in audio (source only, other than SCO), IOT, sensors (medical, home, security and industrial), and HID markets. The datasheet provides details of the functional, operational, and electrical characteristics of the CYW20819 device. It is intended for hardware, design, application, and OEM engineers.

Features

- Bluetooth Sub-System
- □ Complies with Bluetooth Core Specification version 5.0
- □ Includes support for BR, EDR 2 Mbps and 3 Mbps, eSCO, BLE, and LE 2 Mbps.
- □ Programmable TX Power up to +5 dBm
- Excellent receiver sensitivity (-95 dBm for BLE 1 Mbps)
- Microcontroller
 - □ Powerful Arm[®] Cortex[®]-M4 core with a maximum speed of 96 MHz
- Bluetooth stack in ROM allowing standalone operation without any external MCU
- □ 256-KB on-chip Flash
- □ 176-KB on-chip RAM
- Bluetooth stack, Peripheral drivers, Security functions built into ROM (1 MB) allowing application to efficiently use onchip Flash
- □ AES-128 and True Random Number Generator (TRNG)
- Security functions in ROM including ECDSA signature verification
- □ Over-the-air (OTA) firmware updates
- Peripherals
- □ Up to 40 GPIOs
- □ I2C, I2S, UART, and PCM interfaces

Applications


- Wearables and fitness bands
- Home automation
- Blood pressure monitors and other medical applications
- Proximity sensors

- □ Two Quad-SPI interfaces
- □ Auxiliary ADC with up to 28 analog channels
- □ Programmable key scan 20 × 8 matrix
- □ Three-axis quadrature signal decoder
- ☐ General-purpose timers and PWM
- □ Real-time clock (RTC) and watchdog timers (WDT)
- Power Management
- □ On-chip power-on reset (POR)
- □ Integrated buck (DC-DC) and LDO regulators
- □ On-chip software controlled power management unit
- □ On-chip 32 kHz LPO with optional external 32 kHz crystal oscillator support
- Wi-Fi Coexistence
 - □ Global Coexistence Interface (GCI) for Cypress Wi-Fi parts
 - Serial Enhanced Coexistence Interface (SECI)
- Supported in ModusToolBox
- Package Types
 - □ 112-ball FPBGA
 - □ 62-pin FPBGA
- □ RoHS compliant
- Key fobs
- Thermostats and thermometers
- Toys
- Remotes

Cypress Semiconductor CorporationDocument Number: 002-22950 Rev. *E

Functional Block Diagram

Contents

1. Bluetooth Baseband Core	4
1.1 BQB and Regulatory Testing Support .	4
1.2 Wi-Fi Coexistence Support	
2. Microprocessor Unit	
2.1 Main Crystal Oscillator	5
2.2 32 kHz Crystal Oscillator	6
2.3 Low-Frequency Clock Sources	7
2.4 Power Modes	8
2.5 Watchdog	8
2.6 Lockout Functionality	
2.7 True Random Number Generator	
3. Power On and External Reset	
4. Power Management Unit	10
5. Power Configurations	11
5.1 Configuration 1 - VBAT and VDDIO	
5.2 Configuration 2 - External Supplies	
5.3 Configuration 3 - LDOs and VDDIO	13
6. Integrated Radio Transceiver	
6.1 Transmitter Path	
6.2 Receiver Path	
6.3 Local Oscillator	
7. Peripherals	
7.1 I2C Compatible Master	
7.2 Serial Peripheral Interface	
7.3 HCI UART Interface	
7.4 Peripheral UART Interface	
7.5 GPIO Ports	
7.6 Keyboard Scanner	
7.7 Mouse Quadrature Signal Decoder	
7.8 ADC	
7.9 PWM	
7.10 PDM Microphone	
7.11 I2S Interface	
7 12 PCM Interface	19

8. Firmware	
9. Pin Assignments and GPIOs	20
9.1 62-pin FBGA and 112-pin FBGA	
Pin Assignments	20
9.2 I/O States	27
10. Ball Maps	28
10.1 62-Pin FBGA Pin Map	28
10.2 112-pin FBGA Pin	29
11. Specifications	30
11.1 Electrical Characteristics	30
11.2 Brown Out	31
11.3 Core Buck Regulator	32
11.4 Recommended Component	32
11.5 Digital LDO	
11.6 Recommended Component	
11.7 RF LDO	34
11.8 Digital I/O Characteristics	34
11.9 ADC Electrical Characteristics	
11.10 Current Consumption	
11.11 RF Specifications	
11.12 Timing and AC Characteristics	
12. Packaging Diagrams	
12.1 62-Pin FBGA Package	
12.2 112-Pin FBGA Package	
12.3 Tape Reel and Packaging Specifications	
13. Ordering Information	46
14. Acronyms	
Document History Page	
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	49

1. Bluetooth Baseband Core

The Bluetooth Baseband Core (BBC) implements all of the time-critical functions required for high-performance Bluetooth operation. The BBC manages the buffering, segmentation, and routing of data for all ACL, SCO, eSCO, LE, and 2 Mbps LE connections. It prioritizes and schedules all RX/TX activities including adv, paging, scanning, and servicing of connections. In addition to these functions, it independently handles the host controller interface (HCI) including all commands, events, and data flowing over HCI. The core also handles symbol timing, forward error correction (FEC), header error control (HEC), cyclic redundancy check (CRC), authentication, data encryption/decryption, and data whitening/dewhitening.

Table 1 lists key BT features supported by the CYW20819.

Table 1. Key Bluetooth Features Supported By CYW20819

Bluetooth 1.0	Bluetooth 1.2	Bluetooth 2.0
Basic Rate	Interlaced Scans	EDR 2 Mbps and 3 Mbps
SCO	Adaptive Frequency Hopping	-
Paging and Inquiry	eSCO	-
Page and Inquiry Scan	-	-
Sniff	-	-
Bluetooth 2.1	Bluetooth 3.0	Bluetooth 4.0
Secure Simple Pairing	Unicast Connectionless Data	Bluetooth Low Energy
Enhanced Inquiry Response	Enhanced Power Control	-
Sniff Subrating	eSCO	-
Bluetooth 4.1	Bluetooth 4.2	Bluetooth 5.0
Low Duty Cycle Advertising	Data Packet Length Extension	LE 2 Mbps
Dual Mode	LE Secure Connection	Slot Availability Mask
LE Link Layer Topology	Link Layer Privacy	High Duty Cycle Advertising

1.1 BQB and Regulatory Testing Support

The CYW20819 fully supports Bluetooth Test Mode as described in Part I:1 of the Specification of the Bluetooth System Version 3.0. This includes the transmitter tests, normal and delayed loop back tests, and reduced hopping sequence.

In addition to the standard Bluetooth Test Mode, the CYW20819 also supports enhanced testing features to simplify RF debugging and qualification. These features include:

- Fixed frequency carrier wave (unmodulated) transmission
 - □ Simplifies some type-approval measurements (Japan)
 - Aids in transmitter performance analysis
- Fixed frequency constant receiver mode
 - □ Receiver output directed to I/O pin
 - Allows for direct BER measurements using standard RF test equipment
 - Facilitates spurious emissions testing for receive mode
- Fixed frequency constant transmission
 - □ 8-bit fixed pattern or PRBS-9
 - $\ensuremath{\square}$ Enables modulated signal measurements with standard RF test equipment

1.2 Wi-Fi Coexistence Support

The CYW20819 includes support for:

- Global Coexistence Interface for use with Cypress Wi-Fi parts
- Serial Enhanced Coexistence Interface (SECI) for use with SECI compatible Wi-Fi parts

2. Microprocessor Unit

The CYW20819 includes a Cortex M4 processor with 1 MB of program ROM, 176K RAM, and 256 KB of flash. The CM4 has a maximum speed of 96 MHz. The 256 KB of flash is supported by an 8 KB cache allowing direct code execution from flash at near maximum speed and low power consumption.

The CM4 runs all the BT layers as well as application code. The ROM includes LMAC, HCI, L2CAP, GATT, as well as other stack layers freeing up most of the flash for application usage.

A standard serial wire debug (SWD) interface provides debugging support. Refer to the Firmware section for details on the architecture and layers that are included in the ROM.

2.1 Main Crystal Oscillator

The CYW20819 uses a 24 MHz crystal oscillator (XTAL).

The XTAL must have an accuracy of ±20 ppm as defined by the Bluetooth specification. Two external load capacitors are required to work with the crystal oscillator. The selection of the load capacitors is XTAL-dependent (see Figure 1).

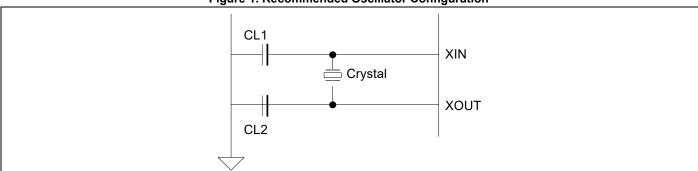


Figure 1. Recommended Oscillator Configuration

Table 2. Reference Crystal Electrical Specifications

Parameter	Conditions	Minimum	Typical	Maximum	Unit
Nominal Frequency	_	_	24.000	_	MHz
Oscillation Mode	_		Fundamental		_
Frequency Accuracy	Includes operating temperature range and aging	_	_	±20	ppm
Equivalent Series Resistance	-	_	_	60	Ω
Load Capacitance	_	_	8	_	pF
Drive Level	_	_	_	200	μW
Shunt Capacitance	_	-	-	2	pF

2.2 32 kHz Crystal Oscillator

The CYW20819 includes a 32 kHz oscillator to provide accurate timing during low power operations. Figure 2 shows the 32 kHz XTAL oscillator with external components and Table 3 lists the oscillator's characteristics. This oscillator can be operated with a 32 kHz or 32.768 kHz crystal oscillator or be driven with a clock input at similar frequency. The XTAL must have an accuracy of ±250 ppm or better per the BT spec over temperature and including aging. The default component values are: R1 = 10 M Ω and C1 = C2 = ~6 pF. The values of C1 and C2 are used to fine-tune the oscillator.

C 2 32.768 kHz R 1 XTAL C 1

Figure 2. 32 kHz Oscillator Block Diagram

Table 3. XTAL Oscillator Characteristics

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Output Frequency	F _{oscout}	_	_	32.768	_	kHz
Frequency Tolerance	_	Over temperature and aging	-	-	250	ppm
XTAL Drive Level	P _{drv}	For crystal selection	-	_	0.5	μW
XTAL Series Resistance	R _{series}	For crystal selection	_	_	70	kΩ
XTAL Shunt Capacitance	C _{shunt}	For crystal selection	_	_	2.2	pF

2.3 Low-Frequency Clock Sources

The 32-kHz low-frequency clock (LPO_32K on the following figure) can be obtained from multiple sources. There are two internal low-power oscillators (LPOs), called the LP-LPO and HP-LPO, as well as external crystal connections (OSC32K). The firmware determines the clock source to use among the available LPOs depending on the accuracy and power requirements. The preferred source is the external LPO (OSC32K) because it has good accuracy with the lowest current consumption. Internal LP-LPO has low current consumption and low accuracy whereas HP-LPO has higher accuracy and higher current consumption. The firmware assumes the external LPO has less than 250 PPM error with little or no jitter.

Variable Frequency HCLK CPU DIV N 48/96M Fixed Frequency Block Timers DIV N XTAL24M ADPLL -96 M SPI2 48M **PUART** DIV N PTU **HCI UART** I2C ADC 24M (12M)DIV N 24M 1M ACLK0 24M ACLK 1 PWM(0-5) OSC32K LPO HP-LPO LPO_32K LHL LPO LP-LPO RTC

Figure 3. Simplified Clock Source

2.4 Power Modes

The CYW20819 supports the following HW power modes:

- Active Mode: Normal operating mode in which all peripherals are available and CPU is active
- Idle Mode CPU is paused: In this mode, the CPU is in "Wait for Interrupt" (WFI) and the HCLK, which is the high frequency clock derived from the main crystal oscillator, is running at a lower clock speed. Other clocks are active and the state of the entire chip is retained.
- Sleep Mode: All systems clocks idle except for the LPO. The chip can wake up either after a programmed period of time has expired or if an external event is received via one of the GPIOs. In this mode, CPU is in WFI and the HCLK is not running. The PMU determines if the other clocks can be turned off and does accordingly. State of the entire chip is retained, the internal LDOs run at a lower voltage (voltage is managed by the PMU), and SRAM is retained.
- PDS (Power Down Sleep) Mode: Radio powered down and digital core mostly powered down except for RAM, registers, and some core logic. CYW20819 can wake up either after a programmed period of time has expired or if an external event is received via one of the GPIOs.
- ePDS (extended PDS) Mode: This is an extension of the PDS Mode. In this mode, only the main RAM and ePDS control circuitry retains power. As in other modes, the CYW20819 can wake up either after a programmed period or upon receiving an external event.
- HID-OFF (Deep Sleep) Mode: Core, radio, and regulators powered down. Only the LHL IO domain is powered. In this mode, the CYW20819 can be woken up either by an event on one of the GPIOs or after a certain amount of time has expired. After wakeup, the part will go through full FW initialization although it will retain enough information to determine that it came out of HID-OFF and the event that caused the wake up. LPO and RTC are turned off in this mode. Either an internal LPO or an external input would provide a measure of time.

Transition between power modes is handled by the on-chip firmware with host/application involvement. In general ePDS is the most power efficient mode for most active use cases. HID-OFF generally works for non connectable beacon type use cases with long advertisement intervals. Refer to the Firmware section for more details.

2.5 Watchdog

CYW20819 includes an onboard watchdog timer with a period of approximately 4 seconds. The watchdog timer generates an interrupt to the FW after 2 seconds of inactivity and resets the parts after 4 seconds.

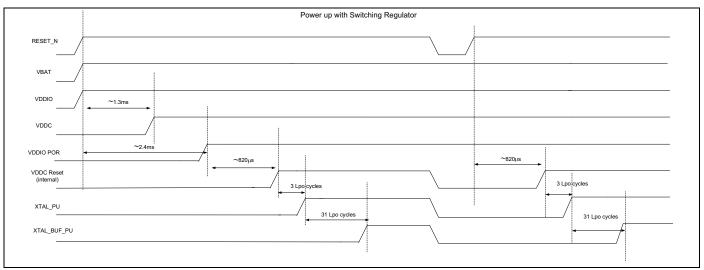
2.6 Lockout Functionality

The CYW20819 powers up with SWD access to flash and RAM is disabled. After reset, FW checks OCF for the presence of a security lockout field. If present, FW leaves JTAG and SWD Flash and RAM access disabled and also blocks any HCI commands from reading the raw contents of the RAM or Flash.

The security field can be programmed in the factory after all programming and testing has been done. Refer to the ModusToolBox documentation for details on how to enable this feature. This provides an effective way of protecting against any tampering, dumping, probing or reverse engineering of OCF resident user application. The only FW upgrade path in this scenario is the secure OTA update.

2.7 True Random Number Generator

The CYW20819 includes a hardware TRNG. Applications can access the random number generator via the firmware driver. Refer to the WICED documentation for details.


Document Number: 002-22950 Rev. *E

3. Power On and External Reset

Figure 4 shows power on and reset timing of the CYW20819. After VBAT is applied and reset is inactive, the internal buck turns on, followed by the RF and Digital LDOs. Once the LDO outputs have stabilized, the PMU allows the digital core to come out of reset. As shown in the figure, external reset can be applied at any time subsequent to power up.

Figure 4. Reset Timing

4. Power Management Unit

Figure 5 shows the CYW20819 power management unit (PMU) block diagram. The CYW20819 includes an integrated buck regulator, a digital LDO for the digital core, and an RF LDO for the Radio. The PMU also includes a brownout detector which places the part in shutdown when input voltage is below a certain threshold.

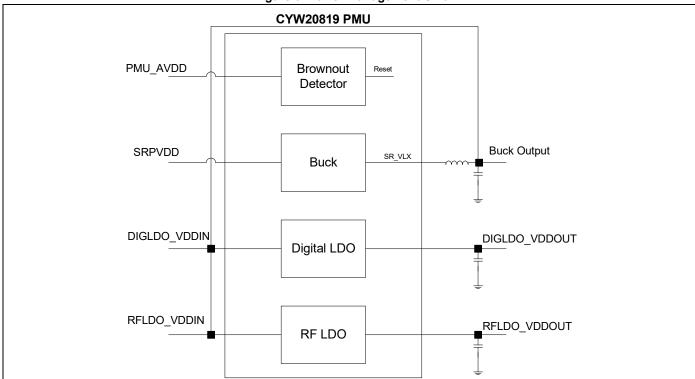
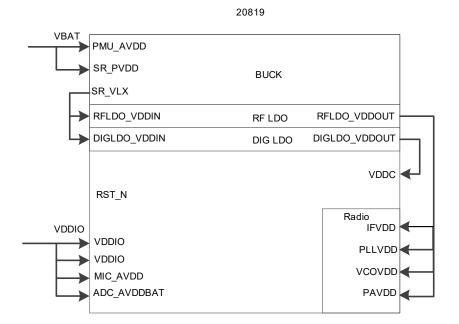


Figure 5. Power Management Unit

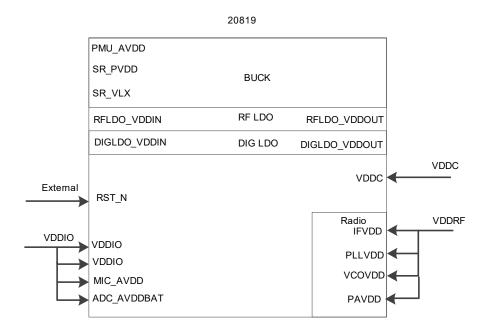
5. Power Configurations


CYW20819 supports three power configurations as described in the following table.

Configuration	Description
VBAT and VDDIO	VBAT and VDDIO are supplied externally and are used to generate all other supplies on the device. Reset may be left floating as it has an internal pull-up, may be connected to an external RC, or may be driven externally.
External Supplies	PMU is disabled and on-chip regulators are not used. All supplies are provided externally. Reset is driven from the outside.
LDOs and VDDIO	On-chip LDOs are used to generate internal supplies but the on-chip buck is not used. Reset is driven externally.

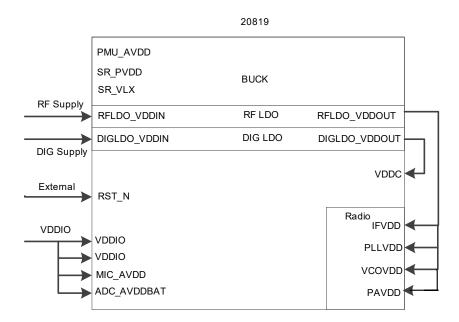
5.1 Configuration 1 - VBAT and VDDIO

In this configuration the device is provided with two supplies (which can also be tied together). RST_N is either left floating and relies on the internal pull-up to VDDIO to bring the device out of reset or tied to an external RC, or driven externally. All other required supplies are generated on-chip (see the following figure). Note that VDDIO must be supplied at the same time or before VBAT is supplied.


The device may require an external reset when any supply voltages drop below 1V. POR operation not guaranteed below 1V.

5.2 Configuration 2 - External Supplies

In this configuration the internal regulators are not used and VBAT is not supplied. VDDIO is supplied along with externally generated core and radio supplies. This is shown in the following figure.


Note that VDDIO must be provided simultaneously or before the rest of the supplies and the device must be held in reset until all supplies are within normal operating ranges.

The device may require a reset if any supply goes outside the normal operating range.

5.3 Configuration 3 - LDOs and VDDIO

In this configuration the internal buck regulator is not used. Instead, power is supplied to the internal LDOs which are responsible for supplying the rest of the device.

Note that VDDIO must be provided simultaneously or before the rest of the supplies and the device must be held in reset until all supplies are within normal operating ranges. The internal LDOs have a small turn-on time (specified later in the datasheet) which should be accounted for before releasing reset.

The device may require a reset if any supply goes outside the normal operating range.

6. Integrated Radio Transceiver

The CYW20819 has an integrated radio transceiver that has been designed to provide low power operation in the globally available 2.4 GHz unlicensed ISM band. It is fully compliant with Bluetooth Radio Specification 3.0 and meets or exceeds the requirements to provide the highest communication link quality of service.

6.1 Transmitter Path

The CYW20819 features a fully integrated transmitter. The baseband transmit data is GFSK modulated in the 2.4 GHz ISM band.

Digital Modulator

The digital modulator performs the data modulation and filtering required for the GFSK signal. The fully digital modulator minimizes any frequency drift or anomalies in the modulation characteristics of the transmitted signal.

Power Amplifier

The CYW20819 has an integrated power amplifier (PA) that can transmit up to +4 dBm dBm for class 2 operation.

6.2 Receiver Path

The receiver path uses a low IF scheme to down-convert the received signal for demodulation in the digital demodulator and bit synchronizer. The receiver path provides a high degree of linearity, and an extended dynamic range to ensure reliable operation in the noisy 2.4 GHz ISM band. The front-end topology, which has built-in out-of-band attenuation, enables the CYW20819 to be used in most applications without off-chip filtering.

Digital Demodulator and Bit Synchronizer

The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency tracking and bit synchronization algorithm.

Receiver Signal Strength Indicator

The radio portion of the CYW20819 provides a receiver signal strength indicator (RSSI) to the baseband. This enables the controller to take part in a Bluetooth power-controlled link by providing a metric of its own receiver signal strength to determine whether the transmitter should increase or decrease its output power.

6.3 Local Oscillator

The local oscillator (LO) provides fast frequency hopping (1600 hops/second) across the band. The CYW20819 uses an internal loop filter.

Document Number: 002-22950 Rev. *E

7. Peripherals

7.1 I²C Compatible Master

The CYW20819 provides a 2-pin I^2C compatible master interface to communicate with I^2C compatible peripherals. The I^2C compatible master supports the following clock speeds:

- 100 kHz
- 400 kHz
- 800 kHz (Not a standard I²C-compatible speed.)
- 1 MHz (Compatibility with high-speed I²C-compatible devices is not guaranteed.)

The I²C compatible master is capable for doing read, write, write followed by read, and read followed by write operations where read/ write can be up to 64 bytes.

SCL and SDA lines can be routed to any of the P0-P39 GPIOs allowing for flexible system configuration. When used as SCL/SDA the GPIOs go into open drain mode and require an external pull-up for proper operation. I²C does not support multimaster capability or flexible wait-state insertion by either master or slave devices.

7.2 Serial Peripheral Interface

The CYW20819 has two independent SPI interfaces. Both interfaces support single, dual, and Quad Mode SPI operations. Either interface can be a master or a slave. Each interface has a 64-byte transmit buffer and a 64-byte receive buffer. To support more flexibility for user applications, the CYW20819 has optional I/O ports that can be configured individually and separately for each functional pin.

SPI IO voltage depends on VDDO/VDDM.

7.3 HCI UART Interface

The CYW20819 includes a UART interface for factory programming as well as when operating as a BT HCI device in a system with an external host. The UART physical interface is a standard, 4-wire interface (RX, TX, RTS, and CTS) with adjustable baud rates from 115200 bps to 3 Mbps. Typical rates are 115200, 921600, 1500000, and 3,000,000 bps although intermediate speeds are also available. Support for changing the baud rate during normal HCI UART operation is included through a vendor-specific command. The CYW20819 UART operates correctly with the host UART as long as the combined baud rate error of the two devices is within ±5%. The UART interface CYW20819 has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support enhanced data rates. The interface supports the Bluetooth UART HCI (H4) specification. The default baud rate for H4 is 115.2 kbaud.

During HCI Mode, the DEV_WAKE signal can be programmed to wake up the CYW20819 or allow the CYW20819 to sleep when radio activities permit. The CYW20819 can also wake up the host as needed or allow the host to sleep via the HOST_WAKE signal. Combined, the two signals allow the host and the CYW20819 to optimize system power consumption by allowing independent control of low power modes. DEV_WAKE and HOST_WAKE signals can be enabled via a vendor specific command.

The FW UART driver allows applications to select different baud rates.

7.4 Peripheral UART Interface

The CYW20819 has a second UART that may be used to interface to peripherals. Functionally, the peripheral UART is the same as the HCI UART except for 256 byte TX/RX FIFOs. The peripheral UART is accessed through the I/O ports, which can be configured individually and separately for each functional pin. The CYW20819 can map the peripheral UART to any GPIO.

7.5 GPIO Ports

The CYW20819 has 40 general purpose IOs labeled P0-P39. All GPIOs support the following:

- Programmable pull-up/down of approx 45 kΩ
- Input disable, allowing pins to be left floating or analog signals connected without risk of leakage
- Source/sink 8 mA at 3.3V and 4 mA at 1.8V
- P26/P27/P28/P29 sink/source 16 mA at 3.3V and 8 mA at 1.8V

Most peripheral functions can be assigned to any GPIO. For details, see Table 5 and Table 6.

7.6 Keyboard Scanner

The CYW20819 includes a HW key scanner that supports a maximum matrix size of 20x8. The scanner has 8 inputs (also referred to as rows) and 20 outputs (also referred to as columns). Keys are detected by driving the columns down sequentially and sampling the rows. The HW scanner includes support for ghost key detection and debouncing. The scanner can also operate in Sleep and PDS modes allowing low power operation while continuing to detect/store all key strokes, up or down. In other low power modes, the scanner can continue to monitor the matrix and initiate exit to Active Mode upon detecting a change of state.

The application can access the key scanner via the associated firmware driver. Refer to the Firmware section for more details.

7.7 Mouse Quadrature Signal Decoder

The CYW20819 includes one double-axis and one single axis quadrature decoders. There are two input lines for each axis and a programmable control signal that can be active high or low.

The application can access the quadrature interface via the driver included in the firmware.

7.8 ADC

The CYW20819 includes a Σ - Δ ADC designed for audio and DC measurements. The ADC can measure the voltage on 28 GPlOs (P0, P1, P8–P19, P21–23, P28–P38). When used for analog inputs, the GPlOs must be placed in digital input disable mode to disconnect the digital circuit from the pin and avoid leakage. The internal bandgap reference has $\pm 5\%$ accuracy without calibration. Calibration and digital correction schemes can be applied to reduce ADC absolute error and improve measurement accuracy in Direct Current (DC) Mode.

The application can access the ADC through the ADC driver included in the firmware.

7.9 PWM

The CYW20819 has six internal PWMs. labeled PWM0-5.

- Each of the six PWM channels contains the following registers:
 - ☐ 16-bit initial value register (read/write)
 - ☐ 16-bit toggle register (read/write)
 - □ 16-bit PWM counter value register (read)
- PWM configuration register is shared among PWM0-5 (read/write). This 18-bit register is used:
 - □ To enable/disable each PWM channel
 - □ To select the clock of each PWM channel
 - □ To invert the output of each PWM channel. The application can access the PWM module through the FW driver.

Figure 6 shows the structure of one PWM channel.

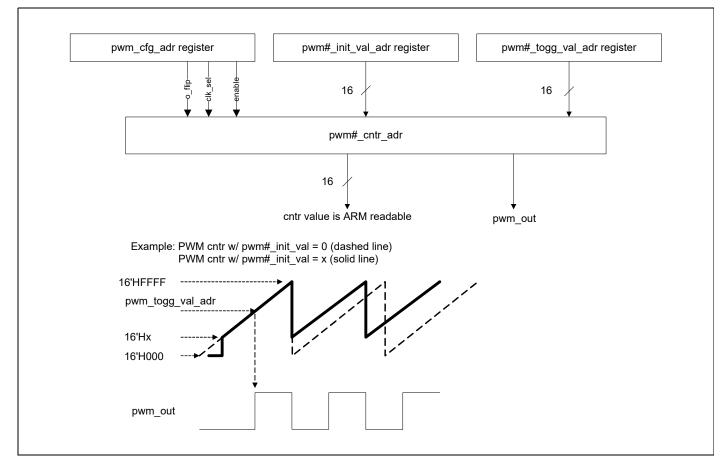


Figure 6. PWM Block Diagram

7.10 PDM Microphone

The CYW20819 accepts a $\Sigma\Delta$ -based one-bit pulse density modulation (PDM) input stream and outputs filtered samples at either 8 kHz or 16 kHz sampling rates. The PDM signal derives from an external kit that can process analog microphone signals and generate digital signals. The PDM inputs share the filter path with the aux ADC. Two types of data rates can be supported:

- 8 kHz
- 16 kHz

The external digital microphone takes in a 2.4 MHz clock generated by the CYW20819 and outputs a PDM signal which is registered by the PDM interface with either the rising or falling edge of the 2.4 MHz clock selectable through a programmable control bit. The design can accommodate two simultaneous PDM input channels, so stereo voice is possible.

7.11 I²S Interface

The CYW20819 supports a single I2S digital audio port with both master and slave modes. The I²S signals are:

■ I²S Clock: I²S SCK

■ I²S Word Select: I²S WS

■ I²S Data Out: I²S DO

■ I²S Data In: I²S DI

I²S SCK and I²S WS become outputs in master mode and inputs in slave mode, while I²S DO always stays as an output. The channel word length is 16 bits and the data is justified so that the MSB of the left-channel data is aligned with the MSB of the I²S bus, per I²S Specifications. The MSB of each data word is transmitted one bit clock cycle after the I²S WS transition, synchronous with the falling edge of bit clock. Left Channel data is transmitted when I²S WS is low, and right-channel data is transmitted when I²S WS is high. Data bits sent by the CYW20819 are synchronized with the falling edge of I²S SCK and should be sampled by the receiver on the rising edge of the I²S SCK.

The clock rate in master mode is as follows:

■ 16 kHz × 16 bits per frame = 256 kHz

The master clock is generated from the reference clock using an N/M clock divider. In the slave mode, any clock rate is supported up to a maximum of 3.072 MHz.

7.12 PCM Interface

The CYW20819 includes a PCM interface that can connect to linear PCM codec devices in master or slave mode. In master mode, the CYW20819 generates the PCM_CLK and PCM_SYNC signals. In slave mode, these signals are provided by another master on the PCM interface and are inputs to the CYW20819. The configuration of the PCM interface may be adjusted by the host through the use of vendor-specific HCl commands.

Note The PCM interface shares HW with the I2S interface and only one can be used at any time. Only audio source (other than SCO) use cases are supported on CYW20819.

7.12.1 Slot Mapping

The CYW20819 supports up to three simultaneous full-duplex channels through the PCM Interface. These three channels are time-multiplexed onto the single PCM interface by using a time-slotting scheme where the 8 kHz or 16 kHz audio sample interval is divided into as many as 16 slots. The number of slots is dependent on the selected interface rate (128 kHz, 512 kHz, or 1024 kHz). The corresponding number of slots for these interface rate is 1, 2, 4, 8, and 16, respectively. Transmit and receive PCM data from an SCO channel is always mapped to the same slot. The PCM data output driver tristates its output on unused slots to allow other devices to share the same PCM interface signals. The data output driver tristates its output after the falling edge of the PCM clock during the last bit of the slot.

7.12.2 Frame Synchronization

The CYW20819 supports both short- and long-frame synchronization in both master and slave modes. In short frame synchronization mode, the frame synchronization signal is an active-high pulse at the audio frame rate that is a single-bit period in width and is synchronized to the rising edge of the bit clock. The PCM slave looks for a high on the falling edge of the bit clock and expects the first bit of the first slot to start at the next rising edge of the clock. In long-frame synchronization mode, the frame synchronization signal is again an active-high pulse at the audio frame rate; however, the duration is three bit periods and the pulse starts coincident with the first bit of the first slot.

7.12.3 Data Formatting

The CYW20819 may be configured to generate and accept several different data formats. For conventional narrow band speech mode, the CYW20819 uses 13 of the 16 bits in each PCM frame. The location and order of these 13 bits can be configured to support various data formats on the PCM interface. The remaining three bits are ignored on the input and may be filled with 0s, 1s, a sign bit, or a programmed value on the output. The default format is 13-bit 2's complement data, left justified, and clocked MSB first.

Document Number: 002-22950 Rev. *E

8. Firmware

The CYW20819 ROM firmware runs on a real time operating system and handles the programming and configuration of all on-chip hardware functions as well as the BT/LE baseband, LMAC, HCI, GATT, ATT, L2CAP, and SDP layers. The ROM also includes drivers for on-chip peripherals as well as handling on-chip power management functions including transitions between different power modes. The ROM also supports OTA firmware update and acts as a root of trust

The CYW20819 is fully supported by the Cypress ModusToolBox. ModusToolBox releases provide the latest ROM patches, drivers, and sample applications allowing customized applications using the CYW20819 to be built quickly and efficiently.

Refer to the ModusToolBox documentation for details on the software and how to write applications/profiles using the CYW20819.

9. Pin Assignments and GPIOs

This section addresses both 62-pin FBGA and 112-pin FBGA pin assignments and general purpose IO's (GPIOs) for the CYW20819 device.

9.1 62-pin FBGA and 112-pin FBGA Pin Assignments

Table 4. 62-pin FBGA and 112-pin FBGA Pin Assignments

	Pin N	umber		Power	
Pin Name	FBGA-62	FBGA-112	I/O	Domain	Description
Microphone				ı	
ADC_AVDDBAT	_	A10	I	ADC_AVDD	ADC supply
MIC_AVDD	-	A12	I	ADC_AVDD	ADC supply
MICN	_	B12	I	MIC_AVDD	Microphone negative input
MICP	-	C12	I	MIC_AVDD	Microphone positive input
MICBIAS	_	C11	I	MIC_AVDD	Microphone bias supply
Baseband Supply					
VDDO1	B8	G11	I	VDDO	I/O pad power supply
VDDO2	D1	A1, A6, F1	I	VDDO	I/O pad power supply
VDDC	C8, E1	A7, D12, G1	I/O	VDDC	Baseband core power supply
RF Power Supply					
IFVDD	F6	K10	I	IFVDD	IFPLL power supply
PLLVDD	G8	L12	I	PLLVDD	RFPLL and crystal oscillator supply
PAVDD	H5	M9	I	PAVDD	PA supply
VCOVDD	H8	M12	I	VCOVDD	VCO supply
Onboard LDO's					
DIGLDO_VDDIN	_	L8	I	_	Internal digital LDO input
DIGLDO_VDDOUT	G4	M8	0	_	Internal digital LDO output
RFLDO_VDDIN	-	L7	I	_	RF LDO input
RFLDO_VDDOUT	H4	M7	0	_	RF LDO output
RFLDO_DIGLDO_ VDDIN	E5	-	-	_	Internal digital LDO and RF LDO input
SR_PVDD	H3	М3	I	_	Core buck input
SR_VLX	H2	M4	0	_	Core buck output
PMU_AVDD	G3	M5	I	_	PMU supply
Ground Pins					
ADC_REFGND	_	A11	I	AVSS	Analog reference ground
VSSC	C3, C6, E3	B5, D9, E4, E8, E12, G2, G7, H10, J4	I	VSS	Ground

Table 4. 62-pin FBGA and 112-pin FBGA Pin Assignments (Cont.)

	Din M	Pin Number		Din Number		ımbor –		_	
Pin Name		FBGA-112	I/O	Power Domain	Description				
ADC AVCC	FBGA-62	_	,	AVSS	Analog ground				
ADC_AVSS	A8	B8, B10 B11	ı	AVSS	Analog ground				
MIC_AVSS	_		'		Microphone analog ground				
ADC_AVSSC		C10	1	AVSS	Analog ground				
PMU_AVSS	F4	J5, M1, M6		VSS	PMU ground				
PLLVSS	F7	K11		VSS	Ground				
PAVSS	G6	L10	I .	VSS	Ground				
VCOVSS	G7	L11	ļ	VSS	Ground				
SR_PVSS	H1	M2	I	VSS	Ground				
IFVSS	H7	M11	I	VSS	Ground				
UART	1								
UART_CTS_N	C7	D11	I, PU	VDDO	Clear to send (CTS) for HCI UART interface. Leave unconnected if not used.				
UART_RTS_N	E6	E11	O, PU	VDDO	Request to send (RTS) for HCI UART interface. Leave unconnected if not used.				
UART_RXD	D7	F11	ı	VDDO	UART serial input. Serial data input for the HCI UART interface.				
UART_TXD	D6	F12	O, PU	VDDO	UART serial output. Serial data output for the HCI UART interface.				
Crystal									
XTALI	F8	K12	ı	PLLVDD	Crystal oscillator input. See "The XTAL must have an accuracy of ±20 ppm as defined by the Bluetooth specification. Two external load capacitors are required to work with the crystal oscillator. The selection of the load capacitors is XTAL-dependent (see Figure 1)" for options.				
XTALO	E8	J12	0	PLLVDD	Crystal oscillator output				
XTALI 32K	В7	A9	I	VDDO	Low-power oscillator input				
XTALO_32K	A7	В9	0	VDDO	Low-power oscillator output				
CLK_REQ	-	H9	0	N/A	Used for shared-clock application				
Other			1						
RF	H6	M10	_	_	RF antenna port				
RST_N	G1	K2	I	VDDO	Active-low system reset with internal pull-up resistor.				
JTAG_SEL	G2	L1	_	_	ARM JTAG debug mode control. Connect to GND for all applications.				
Reserved Pins			1						
Reserved	F5, G5	D7, E7, L2, L5, L6	N/A	N/A	Reserved. Leave unconnected.				
GPIOs	-1								
HOST_WAKE	D8	H11	0	VDDO	A signal from the CYW20819 device to the host indicating that the Bluetooth device requires attention.				
DEV_WAKE	E7	J11	I	VDDO	A signal from the host to the CYW20819 indicating that the host requires attention.				
BT_GPIO_2	_	E9	I/O	VDDO	General Purpose I/O: Can also be configured as a GCI pin				
BT GPIO 3	_	F9	I/O	VDDO	General Purpose I/O: Can also be configured as a GCI pin				
BT_GPIO_4	_	G9	I/O	VDDO	General Purpose I/O: Can also be configured as a GCI pin				
BT_GPIO_5	-	G8	I/O	VDDO	General Purpose I/O: Can also be configured as a GCI pin				
P0	D2	D2	I/O	VDDO	Recommended Functions for P0 Keyboard scan input (row): KSI0 A/D converter input 29 Peripheral UART: puart_tx SPI 1: MOSI (master only) UART1_TXD P0 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.				

Table 4. 62-pin FBGA and 112-pin FBGA Pin Assignments (Cont.)

	Pin N	umber		Power	
Pin Name	FBGA-62	FBGA-112	I/O	Domain	Description
P1	C1	D1	1/0	VDDO	Recommended Functions for P1 • Keyboard scan input (row): KSI1 • A/D converter input 28 • Peripheral UART: puart_rts • SPI_1: MISO (slave only) • UART1_RXD • Can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P2	B5	C7	I/O	VDDO	Recommended Functions for P2 ■ Keyboard scan input (row): KSI2 ■ Quadrature: QDX0 ■ SPI_1: MOSI (master only) ■ UART1_RTS_N P2 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P3	A5	В7	I/O	VDDO	Recommended Functions for P3 ■ Keyboard scan input (row): KSI3 ■ Quadrature: QDX1 ■ UART1_CTS_N ■ SPI_1: SPI_CLK (master only) P3 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P4	C5	F7	I/O	VDDO	Recommended Functions for P4 Keyboard scan input (row): KSI4 Quadrature: QDY0 SPI_1: MOSI (master only) P4 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P5	B4	В6	1/0	VDDO	Recommended Functions for P5 Keyboard scan input (row): KSI5 Quadrature: QDY1 Peripheral UART: puart_tx SPI_1: MISO (slave only) 1 ² C: SDA P5 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P6	A4	D6	I/O	VDDO	Recommended Functions for P6 Keyboard scan input (row): KSI6 Quadrature: QDZ0 Peripheral UART: puart_rts PWM2 P6 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P7	-	F6	I/O	VDDO	Recommended Functions for P7 Reyboard scan input (row): KSI7 Quadrature: QDZ1 SPI_1: SPI_CLK (master only) 1 ² C: SCL P7 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P8	A6	A8	I/O	VDDO	Recommended Functions for P8 Keyboard scan output (column): KSO0 A/D converter input 27 External T/R switch control: ~tx_pd P8 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P9	A2	D3	I/O	VDDO	Recommended Functions for P9 Keyboard scan output (column): KSO1 A/D converter input 26 External T/R switc0h control: tx_pd P9 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.

Table 4. 62-pin FBGA and 112-pin FBGA Pin Assignments (Cont.)

Pin Number Power				Power	
Pin Name	FBGA-62	FBGA-112	I/O	Domain	Description
P10	C2	C3	I/O	VDDO	Recommended Functions for P10 Keyboard scan output (column): KSO2 A/D converter input 25 External PA ramp control: PA_Ramp P10 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P11	B2	B4	I/O	VDDO	Recommended Functions for P11 Keyboard scan output (column): KSO3 A/D converter input 24 P11 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P12	A1	А3	I/O	VDDO	Recommended Functions for P12 Keyboard scan output (column): KSO4 A/D converter input 23 P12 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P13	B1	B1	I/O	VDDO	Recommended Functions for P13 Keyboard scan output (column): KSO5 A/D converter input 22 PWM3 P13 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P14	В3	A5	I/O	VDDO	Recommended Functions for P14 Keyboard scan output (column): KSO6 A/D converter input 21 PWM2 P14 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P15	B6	D8	I/O	VDDO	Recommended Functions for P15 Keyboard scan output (column): KSO7 A/D converter input 20 P15 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P16	-	G6	I/O	VDDO	Recommended Functions for P16 Keyboard scan output (column): KSO8 A/D converter input 19 P16 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P17	А3	D5	I/O	VDDO	Recommended Functions for P17 Keyboard scan output (column): KSO9 A/D converter input 18 P17 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P18	-	D4	I/O	VDDO	Recommended Functions for P18 Keyboard scan output (column): KSO10 A/D converter input 17 P18 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P19	-	C4	I/O	VDDO	Recommended Functions for P19 Keyboard scan output (column): KSO11 A/D converter input 16 SCL2 (slave only) P18 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P20	-	A4	I/O	VDDO	Recommended Functions for P20 Keyboard scan output (column): KSO12 SDA2 (slave only) P20 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P21	-	В3	I/O	VDDO	Recommended Functions for P21 Keyboard scan output (column): KSO13 A/D converter input 14 P21 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.

Table 4. 62-pin FBGA and 112-pin FBGA Pin Assignments (Cont.)

Die Name	Pin Number		Pin Number		Pin Number		I/O Power		Description	
Pin Name	FBGA-62	FBGA-112	1/0	Domain	Description					
P22	_	A2	I/O	VDDO	Recommended Functions for P22 Keyboard scan output (column): KSO14 A/D converter input 13 P22 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.					
P23	-	B2	I/O	VDDO	Recommended Functions for P23 Keyboard scan output (column): KSO15 A/D converter input 12 P23 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.					
P24	_	H1	I/O	VDDO	Recommended Functions for P24 • Keyboard scan output (column): KSO16 • SPI_1: SPI_CLK (master only) • Peripheral UART: puart_tx P24 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.					
P25	_	Н5	I/O	VDDO	Recommended Functions for P25 ■ Keyboard scan output (column): KSO17 ■ SPI_1: MISO (slave only) P25 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.					
P26	D4	J1	1/0	VDDO	Recommended Functions for P26 Keyboard scan output (column): KSO18 PWM0 SPI_1: SPI_CS (slave only) Optical control output: QOC0 Current: 16 mA sink P26 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.					
P27	F1	J2	1/0	VDDO	Recommended Functions for P27 Keyboard scan output (column): KSO19 PWM1 SPI_1: MOSI (master only) Optical control output: QOC1 Current: 16 mA sink P27 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.					
P28	C4	C2	I/O	VDDO	Recommended Functions for P28 PWM2 SCL3 (master and slave) Optical control output: QOC2 A/D converter input 11 Current: 16 mA sink P28 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.					
P29	D3	C1	1/0	VDDO	Recommended Functions for P29 PWM3 SDA3 (master and slave) Optical control output: QOC3 A/D converter input 10 Current: 16 mA sink P29 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.					
P30	_	H2	I/O	VDDO	Recommended Functions for P30 A/D converter input 9 Peripheral UART: puart_rts P30 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.					
P31	_	H4	I/O	VDDO	Recommended Functions for P31 A/D converter input 8 Peripheral UART: puart_tx P31 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.					

Table 4. 62-pin FBGA and 112-pin FBGA Pin Assignments (Cont.)

	Pin Number			Power	
Pin Name	FBGA-62	FBGA-112	I/O	Domain	Description
P32	F2	Н6	I/O	VDDO	Recommended Functions P32 A/D converter input 7 Quadrature: QDX0 Auxiliary clock output: ACLK0 Peripheral UART: puart_tx P32 Can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P33	-	K1	I/O	VDDO	Recommended Functions FOR P33 A/D converter input 6 Quadrature: QDX1 Auxiliary clock output: ACLK1 P33 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P34	-	F4	I/O	VDDO	Recommended Functions for P34 A/D converter input 5 Quadrature: QDY0 External T/R switch control: tx_pd P34 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P35	I	E2	I/O	VDDO	Recommended Functions for P35 A/D converter input 4 Quadrature: QDY1 I ² C: SDA P35 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P36	ŀ	E1	I/O	VDDO	Recommended Functions for P36 A/D converter input 3 Quadrature: QDZ0 SPI_1: SPI_CLK (master only) Auxiliary Clock Output: ACLK0 External T/R switch control: ~tx_pd P36 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P37	E2	F2	I/O	VDDO	Recommended Functions for P37 A/D converter input 2 Quadrature: QDZ1 SPI_1: MISO (slave only) Auxiliary clock output: ACLK1 I*C: SCL P37 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P38	-	G5	I/O	VDDO	Recommended Functions for P38 A/D converter input 1 SPI_1: MOSI (master only) P38 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
P39	-	G4	I/O	VDDO	Recommended Functions for P39 External PA ramp control: PA_Ramp P39 can also be remapped using Supermux I/O functions as defined in Table 5 and Table 6.
Strapping Pins					
DISABLE_BROWN OUT_STRAP	-	H7	I	VDDO	Strap pin to disable brownout function.
PMU_LDO_ONLY _STRAP	E4	J6	I	VDDO	Strap pin to indicate LDO-Only mode.
PMU_OFF_STRAP	_	J8	I	VDDO	Strap pin to indicate PMU is off.
TM1	-	H8	ı	_	Device test mode control. Connect to GND for all applications.

Table 5. GPIO Supermux Input Functions

Input
SWDCK
SWDIO
SPI1_CLK
SPI1_CS
SPI1_MOSI
SPI1_MISO
SPI1_IO2
SPI1_IO3
SPI1_INT
SPI2_CLK
SPI2_CS
SPI2_MOSI
SPI2_MISO
SPI2_IO2
SPI2_IO3
SPI2_INT
puart_rx
puart_cts_n
SCL
SDA
SCL2
SDA2
PCM_IN
PCM_CLK
PCM_SYNC
12S_DI
I2S_WS
I2S_CLK
PDM_IN_Ch_1
PDM_IN_Ch 2

Table 6. GPIO Supermux Output Functions

Output
do_P# (data out of GPIO. For example: P0)
do_PCM_IN
do_PCM_OUT
do_PCM_CLK
do_PCM_SYNC

Table 6. GPIO Supermux Output Functions (Cont.)

do_I2S_DO
do_I2S_WS do_I2S_CLK do_CLK_REQ IR_TX kso0 kso1 kso2 kso3 kso4
do_I2S_CLK do_CLK_REQ IR_TX kso0 kso1 kso2 kso3 kso4
do_CLK_REQ IR_TX kso0 kso1 kso2 kso3 kso4
IR_TX kso0 kso1 kso2 kso3 kso4
kso0 kso1 kso2 kso3
kso1 kso2 kso3 kso4
kso2 kso3 kso4
kso3 kso4
kso4
kso5
kso6
kso7
kso8
kso9
kso10
kso11
kso12
kso13
kso14
kso15
kso16
kso17
kso18
kso19
do_P# pwm0
do_P# pwm1
do_P# pwm2
do_P# pwm3
do_P# pwm4
do_P# pwm5
aclk0
aclk1
HID_OFF
pa_ramp
tx_pd
~tx_pd
SWDIO
SDA2

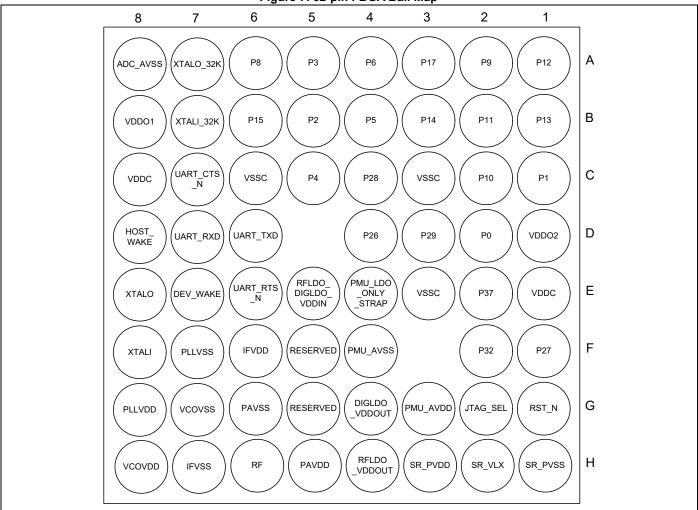
Table 6. GPIO Supermux Output Functions (Cont.)

Output
SCL2
puart_tx (uart2_tx)
puart_rts_n (uart2_rts_n)
SPI1_CLK
SPI1_CS
SPI1_MOSI
SPI1_MISO
SPI1_IO2
SPI1_IO3
SPI2_CLK
SPI2_CS
SPI2_MOSI
SPI2_MISO
SPI2_IO2
SPI2_IO3

9.2 I/O States

When RST_N = 0 (during reset), all GPIOs (P0 to P39) are input-pins, no pull-up/pull-down and input-disabled.

In auto-baud (RST_N=1 and no FW programming), all GPIOs (P0 to P39) are input-pins and no pull-up/pull-down. Input signals are allowed to pass.

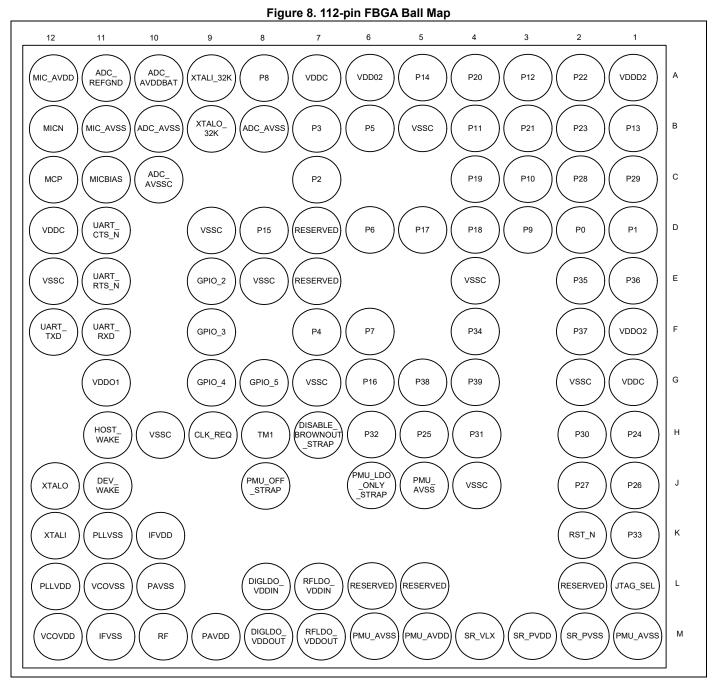


10. Ball Maps

10.1 62-Pin FBGA Pin Map

The CYW20819 62-pin FBGA package is shown in Figure 7.

Figure 7. 62-pin FBGA Ball Map



Note: Pins F5 and G5 are used as PALDO_VDDIN and PALDO_VDDOUT on CYW20820 respectively. Please refer to CYW20820 datasheet for detail.

10.2 112-pin FBGA Pin

The CYW20819 112-pin FBGA package is shown in Figure 8.

Note: Pins L5 and L6 are used as PALDO_VDDIN and PALDO_VDDOUT on CYW20820 respectively. Please refer to CYW20820 datasheet for detail.

11. Specifications

11.1 Electrical Characteristics

Caution! The absolute maximum ratings in Table 7 indicate levels where permanent damage to the device can occur, even if these limits are exceeded for only a brief duration. Functional operation is not guaranteed under these conditions. Operation at absolute maximum conditions for extended periods can adversely affect long-term reliability of the device.

Table 7. Absolute Maximum Ratings

Poquirement Peremeter		Specification		Unit
Requirement Parameter	Min.	Nom.	Max.	Oilit
Maximum Junction Temperature	_	_	125	°C
VDDO1/VDDO2	-0.5	_	3.45	
IFVDD/PLLVDD/VCOVDD/VDDC	-0.5	_	1.38	
PMUAVDD/SR_PVDD	-0.5	_	3.45	
DIGLDO_VDDIN	-0.5	_	1.65	.,
RFLDO_VDDIN	-0.5	_	1.65]
MIC_AVDD	-0.5	_	3.45	

Table 8. ESD/Latchup

Requirement Parameter		Unit			
	Min.	Nom.	Max.	Onit	
ESD Tolerance HBM	-2000	_	2000		
ESD Tolerance CDM	-500	_	500	V	
Latch-up	_	200	_	mA	

Table 9. Environmental Ratings

Characteristic	Value	Unit
Operating Temperature	-30 to +85	°C
Storage Temperature	-40 to +150	C

Table 10. Recommended Operating Conditions

Doromotor		Specification		l lmi4
Parameter	Min.	Тур.	Max.	Unit
VDDC	1.045 ^[1]	1.2	1.26	
IFVDD ^[3]	1.14	1.2	1.26	
PLLVDD ^[3]	1.14	1.2	1.26	
VCOVDD ^[3]	1.14	1.2	1.26	
PAVDD ^[3]	1.14	1.2	1.26	
VDDO1 ^[2]	1.71	3.0	3.3	
VDDO2 ^[2]	1.71	3.0	3.3	V
MIC_AVDD	1.71	3.0	3.3	
PMU_AVDD	1.71	3.0	3.3	
SR_PVDD	1.71	3.0	3.3	
RFLDO_VDDIN	1.26	1.26	1.38	
DIGLDO_VDDIN	1.26	1.26	1.38	

Note

- 1. 1.14V for > 48 MHz operation.
 VDDO1 must be equal to VDDO2. Recommend that these be provided from the same source.
 IFVDD, PLLVDD, VCOVDD, and PAVDD must all be equal. Recommend providing from the same supply.

11.2 Brown Out

The CYW20819 uses an onboard low voltage detector to shut down the part when supply voltage (VDDBAT3V) drops below the operating range.

Table 11. Shutdown Voltage

Parameter		Specification				
Farameter	Min.	Тур.	Max.	Unit		
V _{SHUT}	1.5	1.56	1.7	V		

11.3 Core Buck Regulator

Table 12. Core Buck Regulator

Parameter	Conditions	Min.	Тур.	Max.	Unit
Input Supply, VBAT	DC Range	1.71	3.0	3.3	V
Output Current	Active Mode	-	< 60	100	A
Output Current	PDS Mode	_	< 60	70	mA
Output Valtage	Active Mode	1.1	1.26	1.4	V
Output Voltage	PDS Mode, 40 mV min regulation window.	ulation window. 0.76 0.94 Avg 1.4	1.4	V	
Output Voltage Accuracy	Active Mode, includes line and load regulation. Before trim:	-4	_	+4	%
Ripple Voltage	Active Mode 2.2 μ H \pm 25% inductor, DCR = 114 m Ω \pm 20% 4.7 μ F \pm 10% capacitor, Total ESR < 20 m Ω	_	3	_	mV
	PDS Mode	_	-	_	
Output Inductor, L		1.6 ^[4]	2.2	_	μΗ
Output Capacitor, C _{OUT}	Refer to the Recommended Component section for more details.	3.0 ^[4]	4.7	_	
Input Capacitor, C _{IN}	dotano.	4.0 ^[4]	10	_	μF
Input Supply Voltage Ramp Time	0 to 3.3V	40	_	-	μs

Note

11.4 Recommended Component

Table 13. Recommended Component

Parameter	Conditions	Min.	Тур.	Max.	Unit
External inductor, L	2.2 μ H ±25%, DCR = 114 m Ω ±20%, ACR < 1 Ω (for frequency < 1 MHz)	1.6	2.2	_	μH
External output capacitor, C _{OUT}	4.7 μ F ±10%, 6.3V, 0603 inch, X5R, MLCC capacitor +board total-ESR < 20 m Ω	3.0	4.7	_	
External input capacitor, C _{IN}	For SR_VDDBAT pin Ceramic, X5R, 0402, ESR < 30 m Ω at 4 MHz, +/-20%, 6.3V, 10 μ F	4	10	_	μF

Minimum values represent minimums after derating due to tolerance, temperature, and voltage effects.

11.5 Digital LDO

Table 14. Digital LDO

Parameter	Condition	Min	Тур	Max	Unit
Input Supply, DIGLDO_VDDIN	Min must be met for correct operation	V _{OUT} + 20 mV	1.26	1.4	V
	Range	0.9	1.2	1.275	
Output Voltage, DIGLDO_VDDOUT	Step	_	25	-	mV
	Accuracy	-4	_	+4	%
Dropout Voltage	At max load current	_	_	20	mV
Output Current	DC Load	_	30	60	mA
Quiescent Current	At T ≤ 85 °C, V _{IN} = 1.4V	_	_	50	μA
Output Load Capacitor, C _{OUT}	Total trace + cap ESR must be < 80 mΩ	1.55 ^[5]	2.2	_	μF
Line Regulation	1.235V ≤ V _{IN} ≤ 1.4V	_	_	10	mV/V
Load Regulation	V _{OUT} = 1.2V, V _{IN} = 1.26V, 1 mA ≤ I _{OUT} ≤ 25 mA	_	_	1	mV/mA
Load Step Error	I_{OUT} step 1 mA \leftrightarrow 20 mA @ 1 μ s rise/fall, C_{OUT} = 2.2 μ F, V_{IN} = 1.235V, V_{OUT} = 1.2V	-24	_	+24	mV
Laskana Cumant	Power down Mode, V _{IN} = 1.4V, Temp = 25 °C	_	_	50	nA
Leakage Current	Power down Mode, V _{IN} = 1.4V, Temp = 125 °C	_	_	2	μA
In-rush Current	C _{OUT} = 2.2 μF, V _{IN} = 1.4V, V _{OUT} = 1.2V	_	_	100	mA
LDO Turn On Time	C_{OUT} = 2.2 μ F, V_{IN} = 1.4V, V_{OUT} = 1.2V, I_{OUT} = 20 mA	_	_	120	μs
PSRR	C_{OUT} = 2.2 µF, 1.235V ≤ V_{IN} ≤ 1.4V, V_{OUT} = 1.2V, I_{OUT} = 20 mA f = 1 kHz f = 100 kHz	25 13	_	_	dB dB

11.6 Recommended Component

Table 15. Recommended Component

Parameter	Conditions	Min.	Тур.	Max.	Unit
External output capacitor, Cout	2.2 μ F ±10%, 10V, 0402 inch, X5R, MLCC capacitor +board total- ESR < 20 m Ω	1.55	2.2	ı	μF

Note
5. Minimum values represent minimums after derating due to tolerance, temperature, and voltage effects.

11.7 RF LDO

Table 16. RF LDO

Parameter	Conditions	Min.	Тур.	Max.	Unit	
Input Supply, RFLDO_VDDIN	Min must be met for correct operation	V _{OUT} + 20 mV	1.26	1.4	V	
	Range	1.1	1.2	1.275		
Output Voltage, RFLDO_VDDOUT	Step	_	25	_	mV	
	Accuracy	-4	_	+4	%	
Dropout Voltage	At max load current	_	_	20	mV	
Output Current	DC Load	_	20	60	mA	
Quiescent Current	At T ≤ 85 °C, V _{IN} = 1.4V	_	_	50	μA	
Output Load Capacitor, C _{OUT}	Total trace + cap ESR must be < 80 mΩ	1.55 ^[6]	2.2	_	μF	
Line Regulation	1.235V ≤ V _{IN} ≤ 1.4V	_	_	10	mV/V	
Load Regulation	$V_{OUT} = 1.2V, V_{IN} = 1.26V, 1 \text{ mA} \le I_{OUT} \le 25 \text{ mA}$	-	_	1	mV/mA	
Load Step Error	I_{OUT} step 1 mA \leftrightarrow 20 mA @ 1 μs rise/fall, C_{OUT} = 2.2 μF, V_{IN} = 1.235V, V_{OUT} = 1.2V	-24	-	+24	mV	
Leakage Current	Power down Mode, V _{IN} = 1.4V, Temp = 25 °C	_	-	50	nA	
	Power down Mode, V _{IN} = 1.4V, Temp = 125 °C	_	-	2	μΑ	
In-rush Current	C _{OUT} = 2.2 μF, V _{IN} = 1.4V, V _{OUT} = 1.2V	_	_	100	mA	
LDO Turn On Time	C_{OUT} = 2.2 μ F, V_{IN} = 1.4V, V_{OUT} = 1.2V, I_{OUT} = 20 mA	_	_	120	μs	
PSRR	$C_{OUT} = 2.2 \ \mu\text{F}, \ 1.235 \ \text{V} \le V_{\text{IN}} \le 1.4 \ \text{V}, \ V_{OUT} = 1.2 \ \text{V},$ $I_{OUT} = 20 \ \text{mA}$ $f = 1 \ \text{kHz}$ $f = 100 \ \text{kHz}$		_	_	dB dB	

11.8 Digital I/O Characteristics

Table 17. Digital I/O Characteristics

Characteristics	Symbol	Minimum	Typical	Maximum	Unit	
Input low voltage (VDDO = 3V)	V _{IL}	_	_	0.8		
Input high voltage (VDDO = 3V)	V _{IH}	2.4	_			
Input low voltage (VDDO = 1.8V)	V _{IL}	_	_	0.4	V	
Input high voltage (VDDO = 1.8V)	V _{IH}	1.4	_	_	V	
Output low voltage	V _{OL}	_	_	0.4		
Output high voltage	V _{OH}	VDDO - 0.4V	_	_		
Input low current	I _{IL}	_	_	1.0		
Input high current	I _{IH}	_	_	1.0	μA	
Output low current (VDDO = 3V, V _{OL} = 0.4V)	I _{OL}	_	_	4.0		
Output low current (VDDO = 3V, V _{OL} = 1.8V)	I _{OL}	_	_	2.0	mA	
Output high current (VDDO = 3V, V _{OH} = 2.6V)	I _{OH}	_	_	8.0		
Output high current (VDDO = 1.8V, V _{OH} = 1.4V)	I _{OH}	_	_	4.0		
Input capacitance	C _{IN}	_	_	0.4	pF	

Note
6. Minimum values represent minimums after derating due to tolerance, temperature, and voltage effects.

11.9 ADC Electrical Characteristics

Table 18. Electrical Characteristics

Parameter	Symbol	Conditions/Comments	Min.	Тур.	Max.	Unit
Current consumption	I _{TOT}	-	_	2	3	mA
Power down current	_	At room temperature	_	1	_	μΑ
ADC Core Specification	_					
ADC reference voltage	VREF	From BG with ±3% accuracy	_	0.85	_	V
ADC sampling clock	_	-	_	12	-	MHz
Absolute error	_	Includes gain error, offset and distortion. Without factory calibration.	-	_	5	%
		Includes gain error, offset and distortion. After factory calibration.	_	_	2	%
ENOB	_	For audio application	12	13	_	Bit
		For static measurement	10	_	_	
ADC input full scale	FS	For audio application	-	1.6	_	
		For static measurement	1.8	_	3.3	
Conversion rate	_	For audio application	8	16	_	kHz
Signal bandwidth	_	For audio application	20	_	8K	Hz
		For static measurement	_	DC	_	
Input impedance	R _{IN}	For audio application	10	_	_	ΚΩ
		For static measurement	500	_	_	7
Startup time	_	For audio application	_	10	_	ms
		For static measurement	_	20	_	μs
MIC PGA Specifications						
MIC PGA gain range	_	_	0	_	42	dB
MIC PGA gain step	_	_	-	1	_	dB
PGA input referred noise	_	At 42 dB PGA gain A-weighted	-	-	4	μV
MIC Bias Specifications						
MIC bias output voltage	_	At 3 V supply, 25°C, default settings	-	2.4	_	V
MIC bias loading current	_	_	-	_	3	mA
MIC bias noise	_	Refers to PGA input 20 Hz to 8 kHz, A-weighted	_	_	3	μV
MIC bias PSRR	_	at 1 kHz	40	_	_	dB
ADC SNR	_	A-weighted 0 dB PGA gain, Temperature= 25°C	_	78	-	dB
ADC THD + N	_	−3 dBFS input 0 dB PGA gain, Temperature= 25°C	_	70	_	dB
GPIO input voltage		Always lower than avddBAT	_	_	3.3	V
GPIO source impedance ^a	_	Resistance	_	_	1	kΩ
		Capacitance	_	_	10	pF

a. Conditional requirement for the measurement time of 10 μ s. Relaxed with longer measurement time for each GPIO input channel.

11.10 Current Consumption

Table 19 provides the current consumption measurements taken at input of LDOIN and VDDIO combined (LDOIN = VDDIO = 3.0V).

Table 19. Current Consumption

Operational Mode	Conditions		Typical	Unit
HCI	48 MHz with Pause		1.3	
ПСІ	48 MHz without Pause		2.55	Λ
RX	Continuous RX		5.9	mA
TX	Continuous TX - 0 dBm		5.8	
PDS	-		16.5	
ePDS	All RAM retained		8.7	μA
HID-OFF (Deep Sleep)	32 kHz XTAL on		1.75	

11.11 RF Specifications

Note Table 20 and Table 21 apply to single-ended industrial temperatures. Unused inputs are left open.

Table 20. BR/EDR - Receiver RF Specifications

Parameter	Mode and Conditions	Min	Тур	Max	Unit	
Receiver Section			1	1		
Frequency range	-	2402	_	2480	MHz	
	GFSK, BDR GFSK 0.1% BER, 1 Mbps	_	-91.5 ^[7]	_	dBm	
RX sensitivity	EDR 2M	_	-94.5	_	J.	
	EDR 3M	_	-88.0	_	dB	
Maximum input	-	-20	_	_	dBm	
Interference Performance			11	1		
C/I cochannel	GFSK, BDR GFSK 0.1% BER ^[8]	_	_	11.0		
C/I 1 MHz adjacent channel	GFSK, BDR GFSK 0.1% BER ^[8]	_	_	-4.0	-	
C/I 2 MHz adjacent channel	GFSK, BDR GFSK 0.1% BER ^[8]	_	_	-31.5		
C/I ≥ 3 MHz adjacent channel	GFSK, BDR GFSK 0.1% BER ^[8]	_	_	-42.5	dB	
C/I image channel	GFSK, BDR GFSK 0.1% BER ^[8]	_	_	-24.0		
C/I 1 MHz adjacent to image channel	GFSK, BDR GFSK 0.1% BER ^[8]	_	_	-35.0		
Out-of-Band Blocking Performance	(CW) ^[9]	•				
30 MHz to 2000 MHz	BDR GFSK 0.1% BER	_	-10.0	_		
2000 MHz to 2399 MHz	BDR GFSK 0.1% BER	_	-27	_	dD.	
2498 MHz to 3000 MHz	BDR GFSK 0.1% BER	_	-27	_	dBm	
3000 MHz to 12.75 GHz	BDR GFSK 0.1% BER	_	-10.0	_		
Intermodulation Performance ^[8]			11	II.		
BT, interferer signal level	BDR GFSK 0.1% BER	_	_	-39.0	dBm	
Spurious Emissions			·			
30 MHz to 1 GHz	-	_	_	-57.0	dDm	
1 GHz to 12.75 GHz	-	_		-47.0	dBm	

Notes

- The receiver sensitivity is measured at BER of 0.1% on the device interface with dirty TX Off.
 Desired signal is 10 dB above the reference sensitivity level (defined as -70 dBm).
 Desired signal is 3 dB above the reference sensitivity level (defined as -70 dBm).

Table 21. BR/EDR - Transmitter RF Specifications

Parameter	Min	Тур	Max	Unit	
Transmitter Section	1	1		11.	
Frequency range	2402	_	2480	MHz	
Class 2: BR TX power	_	5.0	_	dD.ma	
Class 2: EDR 2M and 3M TX power	_	0	_	dBm	
20 dB bandwidth	_	930	1000	kHz	
Adjacent Channel Power					
M-N =2	_	_	-20	dBm	
$ M - N \ge 3^{[10]}$	_	_	-40	чын	
Out-of-Band Spurious Emission					
30 MHz to 1 GHz	_	_	-36.0		
1 GHz to 12.75 GHz	_	_	-30.0	dBm	
1.8 GHz to 1.9 GHz	_	_	-47.0	чын	
5.15 GHz to 5.3 GHz	_	_	-47.0		
LO Performance					
Initial carrier frequency tolerance	–75	_	+75	kHz	
Frequency Drift				•	
DH1 packet	-25	_	+25		
DH3 packet	-40	_	+40	kHz	
DH5 packet	-40	_	+40		
Drift rate	-20	_	20	kHz/50 μs	
Frequency Deviation	·	•	•	•	
Average deviation in payload (sequence used is 00001111)	140	_	175	kHz	
Maximum deviation in payload (sequence used is 10101010)	115	_	_	KIIZ	
Channel spacing	_	1	_	MHz	

Table 22. BLE RF Specifications

Parameter	Conditions	Minimum	Typical	Maximum	Unit
Frequency range	N/A	2402	_	2480	MHz
RX sensitivity ^[11]	GFSK, BDR GFSK 0.1% BER 0.1% BER, 1 Mbps	_	-95.0	_	dBm
TX power	N/A	_	4.5	_	
Mod Char: Delta F1 average	N/A	225	255	275	kHz
Mod Char: Delta F2 max ^[12]	N/A	99.9	_	_	%
Mod Char: Ratio	N/A	0.8	_	_	%

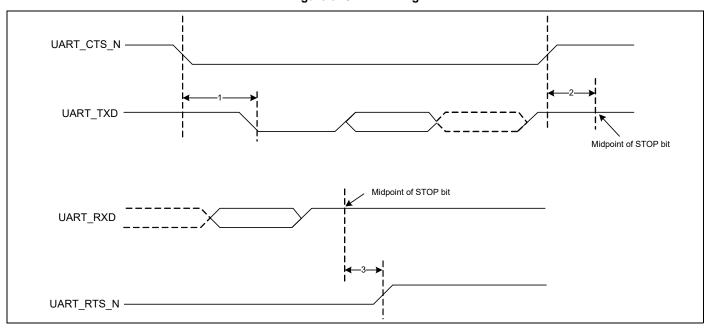
Note
10. Meet SIG Specification.

Notes
11. Dirty TX is Off.
12. At least 99.9% of all delta F2 max frequency values recorded over 10 packets must be greater than 185 kHz.

Table 23. BLE2 RF Specifications

Parameter	Conditions	Minimum	Typical	Maximum	Unit
RX sensitivity ^[13]	_	-	-90.5	_	dBm
TX power	-	_	5.0	_	uDIII

11.12 Timing and AC Characteristics


In this section, use the numbers listed in the Reference column of each table to interpret the timing diagrams shown in Figure 9 through Figure 14.

11.12.1 UART Timing

Table 24. UART Timing Specifications

Reference	Characteristics	Min.	Тур.	Max.	Unit
1	Delay time, UART_CTS_N low to UART_TXD valid.	-	_	1.50	
2	Setup time, UART_CTS_N high before midpoint of stop bit.	-	_	0.67	Bit periods
3	Delay time, midpoint of stop bit to UART_RTS_N high.	_	_	1.33	

Figure 9. UART Timing

Notes 13. 255 packet.

11.12.2 SPI Timing

The SPI interface can be clocked up to 12 MHz.

Table 25 and Figure 10 show the timing requirements when operating in SPI Mode 0 and 2.

Table 25. SPI Mode 0 and 2

Reference	Characteristics		Max.	Unit
1	Time from master assert SPI_CSN to first clock edge	45	-	
2	Setup time for MOSI data lines		½ SCK	ns
3	Idle time between subsequent SPI transactions	1 SCK	_	

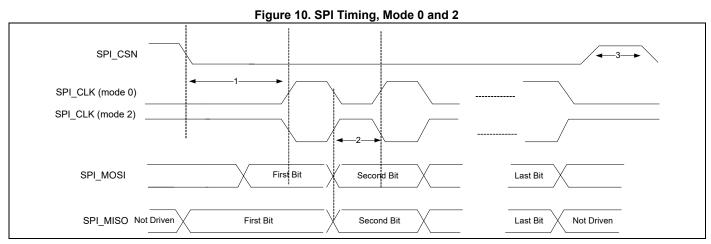
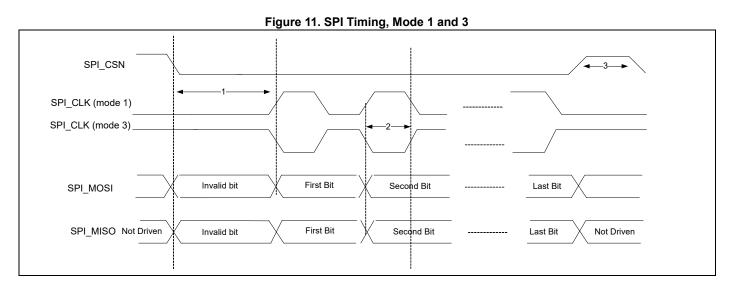



Table 26 and Figure 11 show the timing requirements when operating in SPI Mode 1 and 3.

Table 26. SPI Mode 1 and 3

Reference	Characteristics		Max.	Unit
1	Time from master assert SPI_CSN to first clock edge	45	-	
2	Setup time for MOSI data lines	6	½ SCK	ns
3	Idle time between subsequent SPI transactions	1 SCK	-	

Document Number: 002-22950 Rev. *E

11.12.3 I²C Interface Timing

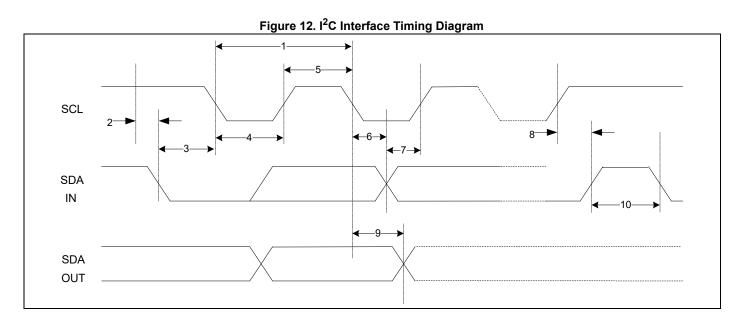

The specifications in Table 27 references Figure 12.

Table 27. I²C Interface Timing Specifications (up to 1 MHz)

Characteristics	Minimum	Maximum	Unit
		100	
Clock fraguency		400	kHz
Clock frequency	_	800	KΠZ
		1000	
START condition setup time	650	_	
START condition hold time	280	_	
Clock low time	650	_	
Clock high time	280	_	
Data input hold time ^[14]	0	_	ns
Data input setup time	100	_	
STOP condition setup time	280	_	
Output valid from clock	_	400	
Bus free time ^[15]	650	_	
	Clock frequency START condition setup time START condition hold time Clock low time Clock high time Data input hold time ^[14] Data input setup time STOP condition setup time Output valid from clock	Clock frequency - START condition setup time 650 START condition hold time 280 Clock low time 650 Clock high time 280 Data input hold time ^[14] 0 Data input setup time 100 STOP condition setup time 280 Output valid from clock -	Clock frequency 100 400 800 800 1000 START condition setup time 650 - START condition hold time 280 - Clock low time 650 - Clock high time 280 - Data input hold time ^[14] 0 - Data input setup time 100 - STOP condition setup time 280 - Output valid from clock - 400

Notes

^{14.} As a transmitter, 125 ns of delay is provided to bridge the undefined region of the falling edge of SCL to avoid unintended generation of START or STOP conditions.
15. Time that the CBUS must be free before a new transaction can start.

11.12.4 I2S

Table 28. Timing for I²S Transmitters and Receivers

	Transmitter		Receiver						
	Lower Lin	nit	Upper	Limit	Lowe	r Limit	Uppe	r Limit	Notes
	Min	Max	Min	Max	Min	Max	Min	Max	
Clock Period T	T _{tr}	_	_	_	T _r	_	_	_	[16]
	М	aster Mode	Clock gen	erated by t	ransmitter	or receiver			
HIGH t _{HC}	0.35T _{tr}	_	_	_	0.35T _{tr}	_	_	_	[17]
LOWt _{LC}	0.35T _{tr}	_	_	_	0.35T _{tr}	_	_	_	[17]
	(Slave Mode:	Clock acc	epted by tr	ansmitter c	r receiver			
HIGH t _{HC}	_	0.35T _{tr}	_	_	_	0.35T _{tr}	_	_	[16]
LOW t _{LC}	_	0.35T _{tr}	_	_	-	0.35T _{tr}	-	_	[16]
Rise time t _{RC}	_	_	0.15T _{tr}	_	-	_		_	[17]
		1	Ti	ransmitter					•
Delay t _{dtr}	_	-	-	0.8T	-	_	-	_	[18]
Hold time t _{htr}	0	_	_	-	_	_	_	_	[17]
Receiver									
Setup time t _{sr}	_	_	_	_	0.2T _{tr}	_	_	_	[19]
Hold time thr	_	_	_	_	0.2T _{tr}	_	_	_	[19]

Notes

^{16.} The system clock period T must be greater than T_{tr} and T_r because both the transmitter and receiver have to be able to handle the data transfer rate.

17. At all data rates in master mode, the transmitter or receiver generates a clock signal with a fixed mark/space ratio. For this reason, t_{HC} and t_{LC} are specified with

respect to 1.

18. In slave mode, the transmitter and receiver need a clock signal with minimum HIGH and LOW periods so that they can detect the signal. So long as the minimum periods are greater than 0.35T_r, any clock that meets the requirements can be used.

19. Because the delay (t_{dtr}) and the maximum transmitter speed (defined by T_{tr}) are related, a fast transmitter driven by a slow clock edge can result in tdtr not exceeding t_{RC} which means t_{htr} becomes zero or negative. Therefore, the transmitter has to guarantee that t_{htr} is greater than or equal to zero, so long as the clock rise-time tRC is not more than t_{RCmax}, where t_{RCmax} is not less than 0.15T_{tr}.

20. To allow data to be clocked out on a falling edge, the delay is specified with respect to the rising edge of the clock signal and T, always giving the receiver sufficient seture time.

^{21.} The data setup and hold time must not be less than the specified receiver setup and hold time.

Figure 13. I²S Transmitter Timing

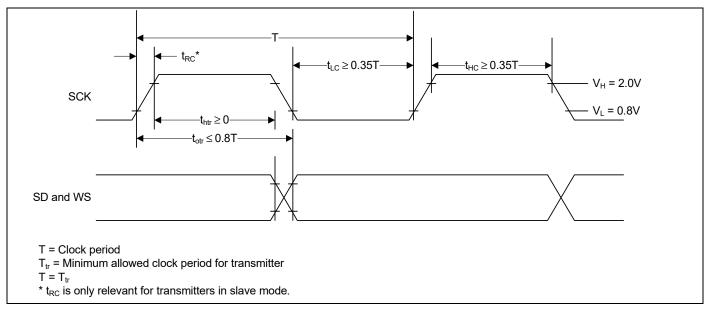
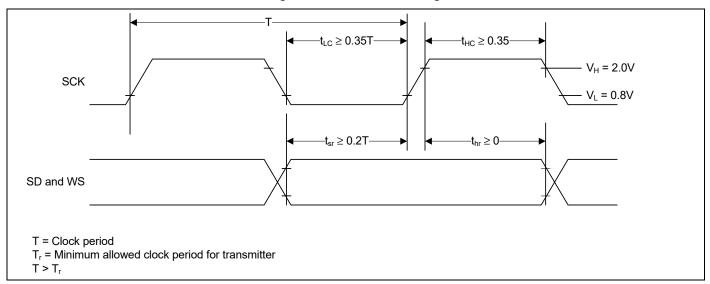
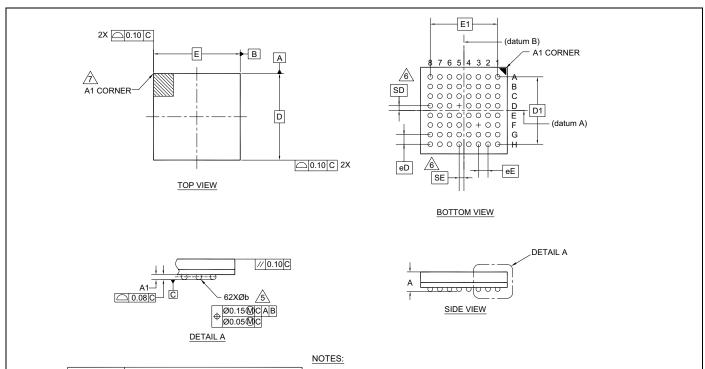



Figure 14. I²S Receiver Timing



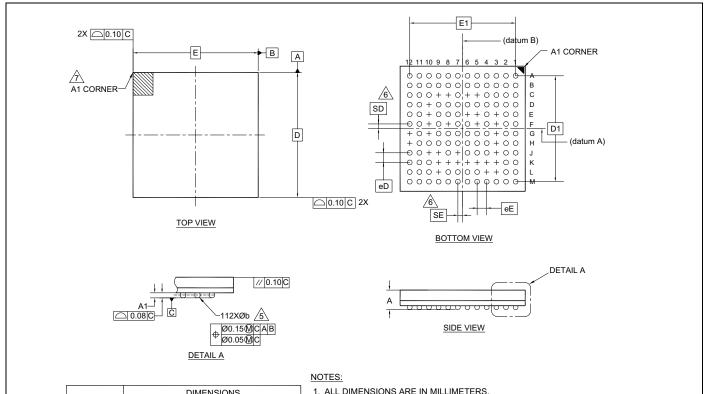
12. Packaging Diagrams

12.1 62-Pin FBGA Package

Figure 15. CYW20819 4.5 mm × 4.5 mm 62-Ball FBGA Package

0)/14/00/	DIMENSIONS			
SYMBOL	MIN.	NOM.	MAX.	
Α	0.70	0.75	0.80	
A1	0.126	0.176	0.226	
D		4.50 BSC		
E		4.50 BSC		
D1	3.50 BSC			
E1	3.50 BSC			
MD		8		
ME		8		
N		62		
Ø b	0.20	0.25	0.30	
eD	0.50 BSC			
eE	0.50 BSC			
SD	0.25 BSC			
SE	0.25 BSC			

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- $2. \ \ \mathsf{SOLDER} \ \mathsf{BALL} \ \mathsf{POSITION} \ \mathsf{DESIGNATION} \ \mathsf{PER} \ \mathsf{JEP95}, \ \mathsf{SECTION} \ 3, \ \mathsf{SPP-020}.$
- 3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.
- 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.


 SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.

 N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
- 6 DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
- 6 "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW "SD" OR "SE" = 0.
 - WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW "SD" = eD/2 AND "SE" = eE/2.
- A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.
- 8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER BALLS.
- 9. JEDEC SPECIFICATION NO. REF.: N/A. 002-20916 *A

12.2 112-Pin FBGA Package

Figure 16. CYW20819 6.5 mm imes 6.5 mm 112-Ball FBGA Package

0.445.01	DIMENSIONS				
SYMBOL	MIN.	NOM.	MAX.		
Α	0.70	0.75	0.80		
A1	0.126	0.176	0.226		
D		6.50 BSC			
E		6.50 BSC			
D1	5.50 BSC				
E1	5.50 BSC				
MD		12			
ME		12			
N		112			
Ø b	0.20	0.25	0.30		
eD	0.50 BSC				
еE	0.50 BSC				
SD	0.25 BSC				
SE	0.25 BSC				

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.
- 3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.
- 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
- 5 DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
- 6\"SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW "SD" OR "SE" = 0.

WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW "SD" = eD/2 AND "SE" = eE/2.

- 7. A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.
- 8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER 002-20917 *A
- 9. JEDEC SPECIFICATION NO. REF.: N/A.

12.3 Tape Reel and Packaging Specifications

Table 29. CYW20819 62-pin FBGA Tape Reel Specifications

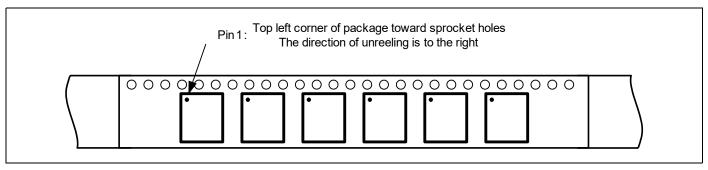

Parameter	Value
Quantity per reel	5500 parts
Reel diameter	13 inches
Hub diameter	4 inches
Tape width	12 mm
Pocket pitch	8 mm
Sprocket hole pitch	4 mm

Table 30. CYW20819 112-pin FBGA Tape Reel Specifications

Parameter	Value
Quantity per reel	3500 parts
Reel diameter	13 inches
Hub diameter	4 inches
Tape width	16 mm
Pocket pitch	12 mm
Sprocket hole pitch	4 mm

The top-left corner of the CYW20819 package is situated near the sprocket holes, as shown in Figure 17.

Figure 17. Pin 1 Orientation

13. Ordering Information

Table 31. Ordering Information

Part Number	Package	Ambient Operating Temperature
CYW20819A1KFB1G	6.5 mm × 6.5 mm 112-ball FBGA	−30 °C to 85 °C
CYW20819A1KFBG	4.5 mm × 4.5 mm 62-ball FBGA	−30 °C to 85 °C

14. Acronyms

Table 32. Acronyms Used in this Document

Term	Description
ACL	asynchronous connection-less
ADC	analog-to-digital converter
AFH	adaptive frequency hopping
ARM7TDMI-S™	Acorn RISC Machine 7 Thumb instruction, Debugger, Multiplier, Ice, Synthesizable
BBC	Bluetooth Baseband Core
BDR	basic data rate
BLE	Bluetooth low energy
BR	basic data rate
CMOS	complementary metal oxide semiconductor
CRC	cyclic redundancy check
ECDSA	elliptic curve digital signature algorithm
ED	erroneous data
EDR	enhanced data rate
EIR	extended inquiry response
ePDS	extended power down sleep
eSCO	extended synchronous connection-oriented
EPR	encryption pause resume
FEC	forward error correction
FPU	floating point unit
GAP	generic access profile
GATT	generic attribute profile
GCI	global coexistence interface
GFSK	Gaussian Frequency Shift Keying
GPIO	general-purpose I/O
HCI	host control interface
HEC	header error control
HID	human-interface device
I2C	inter-integrated circuit
I2S	inter-IC sound bus
IF	intermediate frequency
JTAG	Joint Test Action Group
	<u> </u>

Table 32. Acronyms Used in this Document (Cont.)

Term	Description
L2CAP	logical link control and adaptation protocol
LC	link control
LCU	link control unit
LDO	low drop out
LE	low energy
LED	light emitting diode
LHL	lean high land
LMAC	Lower MAC
LO	local oscillator
LPO	low power oscillator
LSTO	link supervision time out
MOSI	master out slave in
OEM	original equipment manufacturer
OTP	one-time programmable
OCF	on chip flash
OTA	over-the-air
PA	power amplifier
PBF	packet boundary flag
PCM	pulse code modulation
PDM	pulse density modulation
PDS	power down sleep
PLL	phase locked loop
PMU	power management unit
POR	power-on reset
PWM	pulse width modulation
QFN	quad flat no-lead
QoS	quality of service
RAM	random access memory
RC oscillator	A resistor-capacitor oscillator is a circuit composed of an amplifier, which provides the output signal, and a resistor-capacitor network, which controls the frequency of the signal.

Table 32. Acronyms Used in this Document (Cont.)

Term	Description
RF	radio frequency
ROM	read-only memory
RSSI	receiver signal strength indicator
RTC	real time clock
RX/TX	receive/transmit
SCO	synchronous connection-oriented
SDS	Shut Down Sleep
SECI	serial enhanced coexistence interface
SPI	serial peripheral interface
SSP	secure simple pairing
SSR	sniff subrating
SWD	serial wire debug
TRNG	True Random Number Generator
TSSI	transmit signal strength indicator
UART	universal asynchronous receiver/transmitter
WDT	watchdog timer

Document History Page

Document Title: CYW20819 Ultra Low Power, BLE/BR/EDR Bluetooth 5.0 SoC Document Number: 002-22950			
Revision	ECN	Submission Date	Description of Change
**	6085023	03/01/2018	New datasheet
*A	6300383	09/12/2018	Updated the Part Numbers in Ordering Information. Added footnote in Table 21. Updated Interference Performance - Max value in Table 20. Updated Mod Char: Ratio Typ value in Table 22.
*B	6483216	02/22/2019	Added ADC Electrical Characteristics. Updated Functional Block Diagram. Replaced "WICED" to "ModusToolBox" throughout the datasheet. Updated I2S Interface. Updated Table 4, Table 7, Table 12, Table 13, Table 14, Table 15 and Table 16.
*C	6571320	05/21/2019	Removed Serial Peripheral Interface section. Updated Table 21. Added Low-Frequency Clock Sources section. Updated Figure 8.
*D	6680162	01/14/2020	Updated Table 7. Updated Transmitter Section parameter in Table 21.
*E	6899018	07/15/2020	Updated external reset information in Power Configurations section. Updated VDDC pin description in Table 4. Updated Programmable TX Power from +4 to +5 dBm in Features.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/mcu

cypress.com/psoc

cypress.com/pmic

cypress.com/touch

cypress.com/usb

Products

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory

Microcontrollers

PSoC Power Management ICs

Touch Sensing **USB Controllers** Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2018-2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATALOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress com. Other names and brands may be claimed as property of their respective owners