

January 2015

FSA2567 — Low-Power, Dual SIM Card Analog Switch

Features

- Low On Capacitance for Data Path: 10 pF Typical
- Low On Resistance for Data Path: 6 Ω Typical
- Low On Resistance for Supply Path: 0.4 Ω Typical
- Wide V_{CC} Operating Range: 1.65 V to 4.3 V
- Low Power Consumption: 1 µA Maximum
 - 15 μA Maximum I_{CCT} Over Expanded Voltage Range (V_IN=1.8 V, V_{CC}=4.3 V)
- Wide -3 db Bandwidth: > 160 MHz
- Packaged in:
 - Pb-free 16-Lead MLP & 16-Lead UMLP
- 3 kV ESD Rating, >12 kV Power/GND ESD Rating

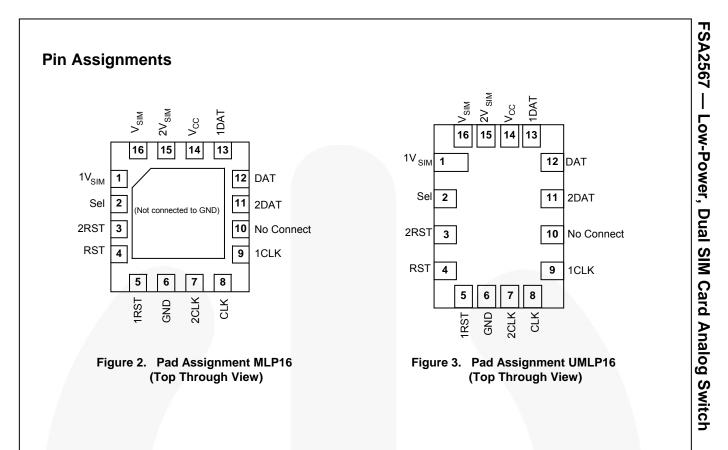
Applications

- Cell phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box

Ordering Information

Description

The FSA2567 is a bi-directional, low-power, dual double-pole, double-throw (4PDT) analog switch targeted at dual SIM card multiplexing. It is optimized for switching the WLAN-SIM data and control signals and dedicates one channel as a supply-source switch.


The FSA2567 is compatible with the requirements of SIM cards and features a low on capacitance (C_{ON}) of 10 pF to ensure high-speed data transfer. The V_{SIM} switch path has a low R_{ON} characteristic to ensure minimal voltage drop in the dual SIM card supply paths.

The FSA2567 contains special circuitry that minimizes current consumption when the control voltage applied to the SEL pin is lower than the supply voltage (V_{CC}). This feature is especially valuable in ultra-portable applications, such as cell phones; allowing direct interface with the general-purpose I/Os of the baseband processor. Other applications include switching and connector sharing in portable cell phones, PDAs, digital cameras, printers, and notebook computers.

Part Number	Top Mark	Operating Temperature Range	Package
FSA2567MPX	FSA2567	-40 to +85°C	16-Lead, Molded Leadless Package (MLP) Quad, JEDEC
SA2567MPX_F157	1 372307		-40 to +85°C
FSA2567UMX	GX		16-Lead, Quad, Ultrathin Molded Leadless Package (UMLP), 1.8 x 2.6 mm

1V_{SIM} 2V_{SIM} 1RST 2RST 1CLK 2CLK 1DAT 2DAT 2DAT

Pin Definitions

Pin	Description
nDAT, nRST, nCLK	Multiplexed Data Source Inputs
nV _{SIM}	Multiplexed SIM Supply Inputs
V _{SIM} , DAT, RST, CLK	Common SIM Ports
Sel	Switch Select

Truth Table

Sel	Function
Logic LOW	1DAT = DAT, 1RST = RST, 1CLK = CLK, $1V_{SIM} = V_{SIM}$
Logic HIGH	2DAT = DAT, 2RST = RST, 2CLK = CLK, 2V _{SIM} = V _{SIM}

FSA2567 — Low-Power, Dual SIM Card Analog Switch

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V _{CC}	Supply Voltage		-0.5	+5.5	V
V _{CNTRL}	DC Input Voltage (Sel) ⁽¹⁾		-0.5	V _{CC}	V
V _{SW}	DC Switch I/O Voltage ⁽¹⁾		-0.5	V _{CC} + 0.3	V
I _{IK}	DC Input Diode Current		-50		mA
I _{SIM}	DC Output Current - V _{SIM}			350	mA
I _{OUT}	DC Output Current – DAT, CLK, RST			35	mA
T _{STG}	Storage Temperature		-65	+150	°C
		All Pins		3	
ESD	Human Body Model, JEDEC: JESD22-A114	I/O to GND		12	kV
	Charged Device Model, JEDEC: JESD22-C101			2	Pr.

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	1.65	4.30	V
V _{CNTRL}	Control Input Voltage (Sel) ⁽²⁾	0	V _{CC}	V
V _{SW}	Switch I/O Voltage	-0.5	V _{CC}	V
I _{SIM}	I _{SIM} DC Output Current - V _{SIM}		150	mA
I _{OUT}	I _{OUT} DC Output Current – DAT, CLK, RST		25	mA
T _A	Operating Temperature	-40	+85	°C

Note:

2. The control input must be held HIGH or LOW; it must not float.

FSA2567 — Low-Power, Dual SIM Card Analog Switch

DC Electrical Characteristics

All typical values are at 25°C, 3.3 V V_{CC} unless otherwise specified.

0	Demonstra		N 00	T _A =- 4	_A =- 40°C to +85°C		Units
Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units
V _{IK}	Clamp Diode Voltage	I _{IN} = -18 mA	2.7			-1.2	V
			1.65 to 2.3	1.1			
V _{IH}	Input Voltage High		2.7 to 3.6	1.3			V
			4.3	1.7			
			1.65 to 2.3			0.4	
V _{IL}	Input Voltage Low		2.7 to 3.6			0.5	V
			4.3			0.7	
I _{IN}	Control Input Leakage	$V_{SW} = 0$ to V_{CC}	4.3	-1		1	μA
I _{nc(off),} I _{no(off),}	Off State Leakage	nRST, nDAT, nCLK, nV _{SIM} = 0.3 V or 3.6 V Figure 10	4.3	-60		60	nA
в	Data Path Switch On	V _{SW} = 0, 1.8 V, I _{ON} = -20 mA Figure 9	1.8		7.0	12.0	0
R _{OND}	Resistance ⁽³⁾	V _{SW} = 0, 2.3 V, I _{ON} = -20 mA Figure 9	2.7		6.0	10.0	Ω
P	V _{SIM} Switch	V _{SW} = 0, 1.8V, I _{ON} = -100mA Figure 9	1.8		0.5	0.7	0
R _{ONV}	On Resistance ⁽³⁾	V _{SW} = 0, 2.3 V, I _{ON} = -100 mA Figure 9	2.7		0.4	0.6	Ω
ΔR_{OND}	Data Path Delta On Resistance ⁽⁴⁾	V _{SW} = 0 V, I _{ON} = -20 mA	2.7		0.2		Ω
I _{CC}	Quiescent Supply Current	$V_{CNTRL} = 0$ or V_{CC} , $I_{OUT} = 0$	4.3			1.0	μA
	Increase in I _{CC} Current	V_{CNTRL} = 2.6 V, V_{CC} = 4.3 V	4.3		5.0	10.0	μA
I _{CCT}	Per Control Voltage and V_{CC}	V _{CNTRL} = 1.8 V, V _{CC} = 4.3 V	4.3		7.0	15.0	μA

Notes:

3. Measured by the voltage drop between nDAT, nRST, nCLK and relative common port pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the relative ports.

4. Guaranteed by characterization.

AC Electrical Characteristics

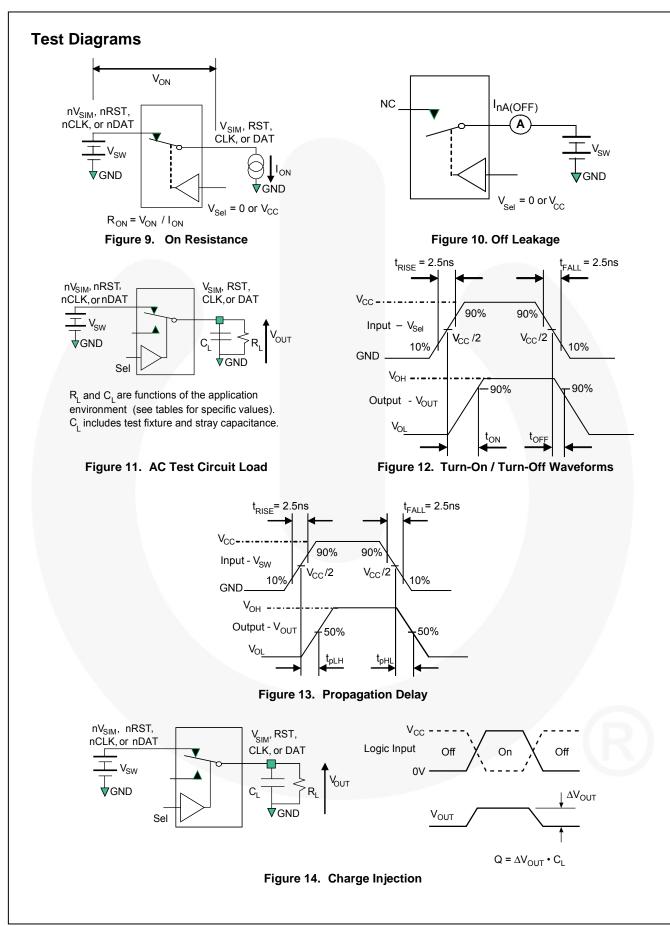
All typical value are for V_{CC}=3.3V at 25°C unless otherwise specified.

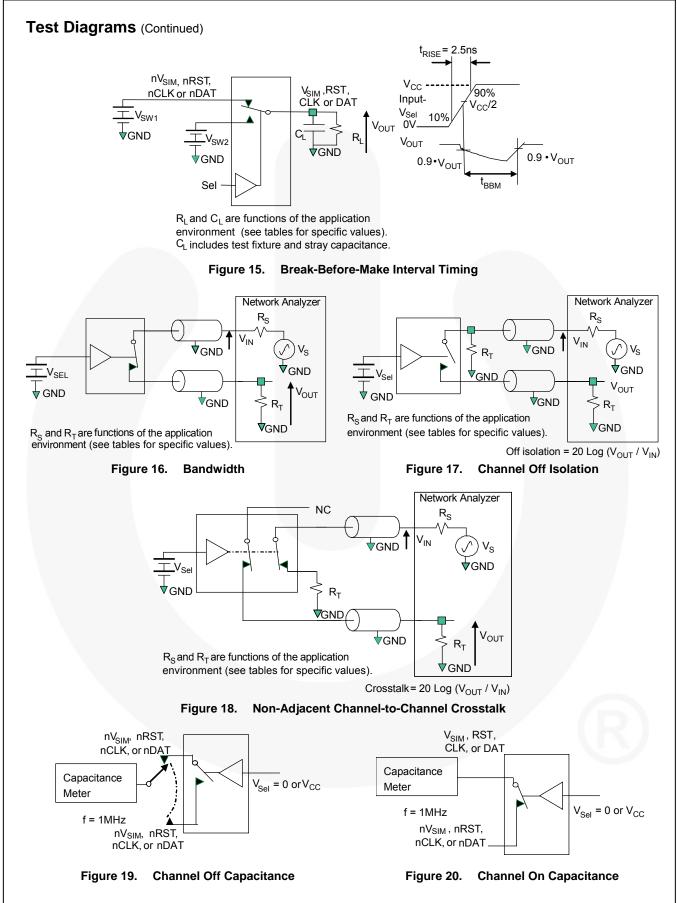
O weeks al	Deveryoter	Conditions	V 00	T _A =- 40°C to +85°C			
Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units
t _{ond}	Turn-On Time Sel to Output	R _L = 50 Ω, C _L = 35 pF V _{SW} = 1.5 V	1.8 ⁽⁵⁾		65	95	ns
COND	(DAT,CLK,RST)	Figure 11, Figure 12	2.7 to 3.6		42	60	ns
t _{OFFD}	Turn-Off Time Sel to Output	R _L = 50 Ω, C _L = 35 pF V _{SW} = 1.5 V	1.8 ⁽⁵⁾		30	50	ns
GFFD	(DAT,CLK,RST)	Figure 11, Figure 12	2.7 to 3.6		20	40	ns
t _{onv}	Turn-On Time	R _L = 50 Ω, C _L = 35 pF V _{SW} = 1.5 V	1.8 ⁽⁵⁾		55	80	ns
UNV	Sel to Output (V _{SIM})	Figure 11, Figure 12	2.7 to 3.6		35	55	ns
t _{OFFV}	Turn-Off Time	R _L = 50 Ω, C _L = 35 pF V _{SW} = 1.5 V	1.8 ⁽⁵⁾		35	50	
V OFFV	Sel to Output (V _{SIM})	Figure 11, Figure 12	2.7 to 3.6		22	40	ns
t _{PD}	Propagation Delay ⁽⁵⁾ (DAT,CLK,RST)	C_L = 35 pF, R_L = 50 Ω Figure 11, Figure 13	3.3		0.25		ns
t _{BBMD}	Break-Before-Make ⁽⁵⁾ (DAT,CLK,RST)	R_L = 50 Ω, C_L = 35 pF V _{SW1} = V _{SW2} = 1.5 V Figure 15	2.7 to 3.6	3	18		ns
t _{BBMV}	Break-Before-Make ⁽⁵⁾ (V _{SIM})	R_L = 50 Ω, C_L = 35 pF V _{SW1} = V _{SW2} = 1.5 V Figure 15	2.7 to 3.6	3	12		ns
Q	Charge Injection (DAT,CLK,RST)	$ C_L = 50 \text{ pF}, \text{R}_{\text{GEN}} = 0 \Omega, \\ \text{V}_{\text{GEN}} = 0 \text{V} $	2.7 to 3.6		10		рС
O _{IRR}	Off Isolation (DAT,CLK,RST)	R_L = 50 Ω, f = 10 MHz Figure 17	2.7 to 3.6		-60		dB
Xtalk	Non-Adjacent Channel Crosstalk (DAT,CLK,RST)	R _∟ = 50 Ω, f = 10 MHz Figure 18	2.7 to 3.6		-60		dB
BW	-3 db Bandwidth (DAT,CLK,RST)	R_L = 50 Ω, C_L = 5 pF Figure 16	2.7 to 3.6		475		MHz

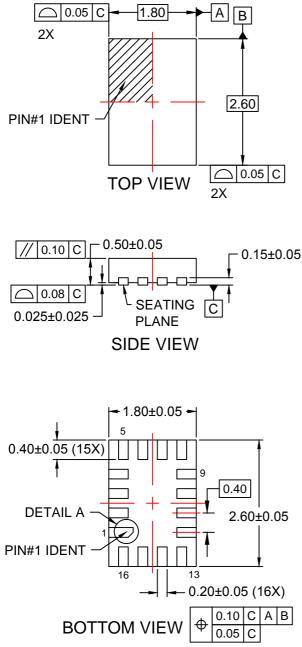
Note:


5. Guaranteed by characterization.

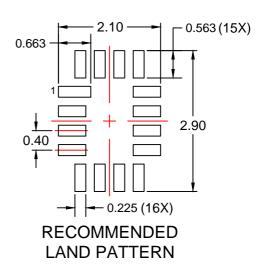
FSA2567
ow-Po
r, Dual
SIM
Card
wer, Dual SIM Card Analog S
g Switch

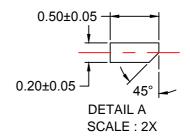

Capacitance

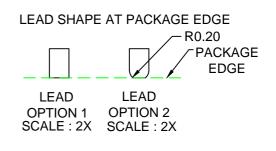

Ourseland	Denementan		T _A =-	T _A =- 40°C to +85°C		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
C _{IN}	Control Pin Input Capacitance	V _{CC} = 0 V		1.5		
C _{OND}	RST, CLK, DAT On Capacitance ⁽⁶⁾	V _{CC} = 3.3 V, f = 1 MHz Figure 20		10	12	
C _{ONV}	V _{SIM} On Capacitance ⁽⁶⁾	V _{CC} = 3.3 V, f = 1 MHz Figure 20		110	150	pF
C_{OFFD}	RST, CLK, DAT Off Capacitance	V _{CC} = 3.3 V, Figure 19		3		
C_{OFFV}	V _{SIM} Off Capacitance	V _{CC} = 3.3 V, Figure 19		40		


Note: 6. Guaranteed by characterization.

FSA2567 — Low-Power, Dual SIM Card Analog Switch

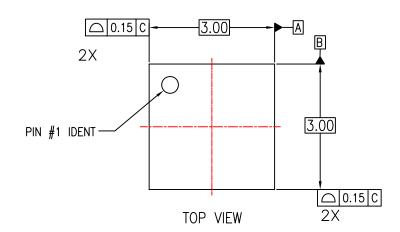


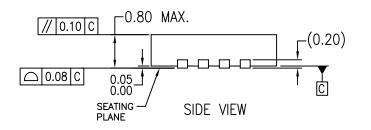


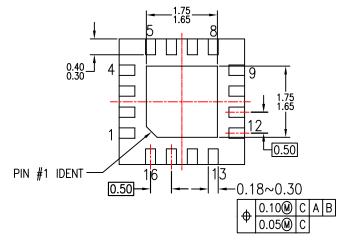


NOTES:

- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- E. DRAWING FILENAME: MKT-UMLP16Arev5.
- F. TERMINAL SHAPE MAY VARY ACCORDING TO PACKAGE SUPPLIER, SEE TERMINAL SHAPE VARIANTS.

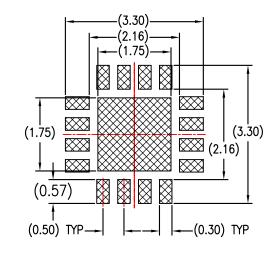






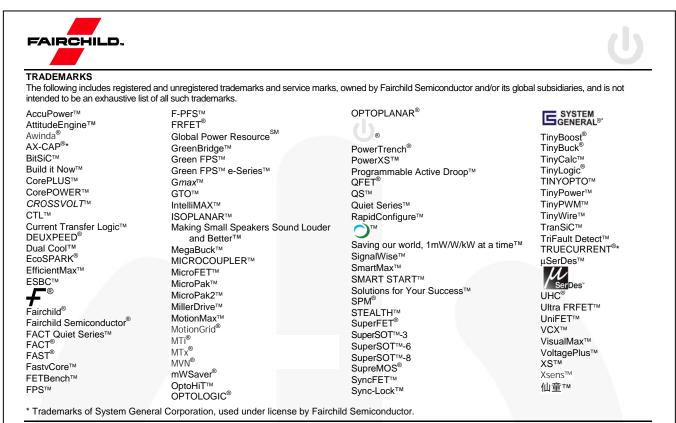
THIS DRAWING IS THE PROPERTY OF FAIRCHILD SEMICONDUCTOR CORPORATION. NO USE THEREOF SHALL BE MADE OTHER THAN AS A REFERENCE FOR PROPOSALS AS SUBMITTED TO FAIRCHILD SEMICONDUCTOR CORPORATION FOR JOBS TO BE EXECUTED IN CONFORMITY WITH SUCH PROPOSALS UNLESS THE CONSENT OF SAID FAIRCHILD SEMICONDUCTOR CORPORATION HAS PREVIOUSLY BEEN OBTAINED. NO PART OF THIS DRAWING SHALL BE COPIED OR DUPLICATED OR ITS CONTENTS DISCLOSED. THE INFORMATION CONTAINED ON THIS DRAWING IS CONFIDENTIAL AND PROPRIETARY.

	REVI	SIONS		
LTR	DESCRIPTION	EDCN	DATE	BY/APP'D
А	RELEASE TO DOCUMENT CONTROL	ECN-MKT-MLP16B	21-2-05	FEITAN
В	Lead length Changed from 0.35–0.45 to 0.30–0.40	ECN-MKT-MLP16B revB	10-6-05	Jkingsbury



BOTTOM VIEW

NOTES:


- A. CONFORMS TO JEDEC REGISTRATION MO-220, VARIATION WEED-Pending, DATED pending
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994
- D. DIMENSIONS ARE EXCLUSIVE OF BURS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

MLP16BrevB

RECOMMENDED LAND PATTERN

APPROVALS	DATE	FAIRCHILD Bayan Lepas, FIZ,
FEITAN 18		BEMICONDUCTOR 11900, Penang, Malaysia.
J. KINGSBURY 6-	-6-2005	
ENGR. CHK. D. CHONG 6-		TOLD, WILF, QUAD,
		JEDEC MO-220, 3MM SQUARE
PROJECTION	_	SCALE SIZE DRAWING NUMBER REV
	_	N/A N/A MKT-MLP16B B
INCH [MM]		DO NOT SCALE DRAWING SHEET 1 of 1

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. 173